Author | Hรผbl, Reinhold. author |
---|---|

Title | Traces of Differential Forms and Hochschild Homology [electronic resource] / by Reinhold Hรผbl |

Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1989 |

Connect to | http://dx.doi.org/10.1007/BFb0098406 |

Descript | VI, 118 p. online resource |

SUMMARY

This monograph provides an introduction to, as well as a unification and extension of the published work and some unpublished ideas of J. Lipman and E. Kunz about traces of differential forms and their relations to duality theory for projective morphisms. The approach uses Hochschild-homology, the definition of which is extended to the category of topological algebras. Many results for Hochschild-homology of commutative algebras also hold for Hochschild-homology of topological algebras. In particular, after introducing an appropriate notion of completion of differential algebras, one gets a natural transformation between differential forms and Hochschild-homology of topological algebras. Traces of differential forms are of interest to everyone working with duality theory and residue symbols. Hochschild-homology is a useful tool in many areas of k-theory. The treatment is fairly elementary and requires only little knowledge in commutative algebra and algebraic geometry

CONTENT

The Hochschild homology and the Hochschild cohomology of a topological algebra -- Differential forms and Hochschild homology -- Traces in Hochschild homology -- Traces of Differential Forms -- Traces in complete intersections -- The topological residue homomorphism -- Trace formulas for residues of differential forms

Mathematics
Algebraic geometry
Mathematical analysis
Analysis (Mathematics)
Mathematics
Algebraic Geometry
Analysis