TitleHarmonic Analysis [electronic resource] : Proceedings of the International Symposium held at the Centre Universitaire de Luxembourg Sept. 7-11, 1987 / edited by Pierre Eymard, Jean-Paul Pier
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1988
Connect tohttp://dx.doi.org/10.1007/BFb0086584
Descript VIII, 300 p. online resource

CONTENT

Some views on the evolution of harmonic analysis -- Induced representations and the applications of harmonic analysis -- Une caracterisation du noyau de Poisson d'un arbre eomogene -- Le noyau de la chaleur sur les espaces symetriques U(p,q)/U(p)รU(q) -- Irreducible representations of abelian groups -- On the uniqueness of minimal definitizing polynomials for a sequence with finitely many negative squares -- Multipliers on spaces of functions with p-summable fourier transforms -- Algebres de type Besov-Sobolev -- Fonctions K de Bessel pour les algebres de Jordan -- Convoluteurs continus et topologie stricte -- Convoluteurs et projecteurs -- Certain group extensions and twisted covariance algebras with generalized continuous trace -- Formule du binรดme gรฉnรฉralisรฉe -- Amenable groups and amenable graphs -- Derivations from L1(G) into L1(G) and L?(G) -- Desintegration des mesures selon la dimension et chaos multiplicatif -- Minimal C*-dense ideals and algebraically irreducible representations of the schwartz-algebra of a nilpotent lie group -- Some remarkable properties of the Wiener algebra W+ -- The class of locally compact groups G for which C*(G) is amenable -- Metaplectic groups and harmonic analysis -- A godement-type decomposition for positive definite functions -- Formes rรฉelles presque dรฉployรฉes des algรจbres de Kac-Moody affines -- Spectral synthesis and difference spectra -- Some applications of topology to group theory -- A new invariant for a finite covariant system -- Inner invariant means and the regular conjugation representation of L1(G)


SUBJECT

  1. Mathematics
  2. Topological groups
  3. Lie groups
  4. Mathematics
  5. Topological Groups
  6. Lie Groups