Author | Verhulst, Ferdinand. author |
---|---|
Title | Nonlinear Differential Equations and Dynamical Systems [electronic resource] / by Ferdinand Verhulst |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1990 |
Connect to | http://dx.doi.org/10.1007/978-3-642-97149-5 |
Descript | IX, 277 p. online resource |
1 Introduction -- 1.1 Definitions and notation -- 1.2 Existence and uniqueness -- 1.3 Gronwallโs inequality -- 2 Autonomous equations -- 2.1 Phase-space, orbits -- 2.2 Critical points and linearisation -- 2.3 Periodic solutions -- 2.4 First integrals and integral manifolds -- 2.5 Evolution of a volume element, Liouvilleโs theorem -- 2.6 Exercises -- 3 Critical points -- 3.1 Two-dimensional linear systems -- 3.2 Remarks on three-dimensional linear systems -- 3.3 Critical points of nonlinear equations -- 3.4 Exercises -- 4 Periodic solutions -- 4.1 Bendixsonโs criterion -- 4.2 Geometric auxiliaries, preparation for the Poincarรฉ- Bendixson theorem -- 4.3 The Poincarรฉ-Bendixson theorem -- 4.4 Applications of the Poincarรฉ-Bendixson theorem -- 4.5 Periodic solutions in Rn. -- 4.6 Exercises -- 5 Introduction to the theory of stability -- 5.1 Simple examples -- 5.2 Stability of equilibrium solutions -- 5.3 Stability of periodic solutions -- 5.4 Linearisation -- 5.5 Exercises -- 6 Linear equations -- 6.1 Equations with constant coefficients -- 6.2 Equations with coefficients which have a limit -- 6.3 Equations with periodic coefficients -- 6.4 Exercises -- 7 Stability by linearisation -- 7.1 Asymptotic stability of the trivial solution -- 7.2 Instability of the trivial solution -- 7.3 Stability of periodic solutions of autonomous equations -- 7.4 Exercises -- 8 Stability analysis by the direct method -- 8.1 Introduction -- 8.2 Lyapunov functions -- 8.3 Hamiltonian systems and systems with first integrals -- 8.4 Applications and examples -- 8.5 Exercises -- 9 Introduction to perturbation theory -- 9.1 Background and elementary examples -- 9.2 Basic material -- 9.3 Naรฏve expansion -- 9.4 The Poincarรฉ expansion theorem -- 9.5 Exercises -- 10 The Poincarรฉ-Lindstedt method -- 10.1 Periodic solutions of autonomous second-order equations -- 10.2 Approximation of periodic solutions on arbitrary long time-scales -- 10.3 Periodic solutions of equations with forcing terms -- 10.4 The existence of periodic solutions -- 10.5 Exercises -- 11 The method of averaging -- 11.1 Introduction -- 11.2 The Lagrange standard form -- 11.3 Averaging in the periodic case -- 11.4 Averaging in the general case -- 11.5 Adiabatic invariants -- 11.6 Averaging over one angle, resonance manifolds -- 11.7 Averaging over more than one angle, an introduction -- 11.8 Periodic solutions -- 11.9 Exercises -- 12 Relaxation oscillations -- 12.1 Introduction -- 12.2 The van der Pol-equation -- 12.3 The Volterra-Lotka equations -- 13 Bifurcation theory -- 13.1 Introduction -- 13.2 Normalisation -- 13.3 Averaging and normalisation -- 13.4 Centre manifolds -- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation -- 13.6 Exercises -- 14 Chaos -- 14.1 The Lorenz-equations -- 14.2 A mapping associated with the Lorenz-equations -- 14.3 A mapping of R into R as a dynamical system -- 14.4 Results for the quadratic mapping -- 15 Hamiltonian systems -- 15.1 Summary of results obtained earlier -- 15.2 A nonlinear example with two degrees of freedom -- 15.3 The phenomenon of recurrence -- 15.4 Periodic solutions -- 15.5 Invariant tori and chaos -- 15.6 The KAM theorem -- 15.7 Exercises -- Appendix 1: The Morse lemma -- Appendix 2: Linear periodic equations with a small parameter -- Appendix 3: Trigonometric formulas and averages -- Answers and hints to the exercises -- References