Author | Duistermaat, J. J. author |
---|---|
Title | Lie Groups [electronic resource] / by J. J. Duistermaat, J. A. C. Kolk |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000 |
Connect to | http://dx.doi.org/10.1007/978-3-642-56936-4 |
Descript | VIII, 344 p. online resource |
1. Lie Groups and Lie Algebras -- 1.1 Lie Groups and their Lie Algebras -- 1.2 Examples -- 1.3 The Exponential Map -- 1.4 The Exponential Map for a Vector Space -- 1.5 The Tangent Map of Exp -- 1.6 The Product in Logarithmic Coordinates -- 1.7 Dynkinโs Formula -- 1.8 Lieโs Fundamental Theorems -- 1.9 The Component of the Identity -- 1.10 Lie Subgroups and Homomorphisms -- 1.11 Quotients -- 1.12 Connected Commutative Lie Groups -- 1.13 Simply Connected Lie Groups -- 1.14 Lieโs Third Fundamental Theorem in Global Form -- 1.15 Exercises -- 1.16 Notes -- 2. Proper Actions -- 2.1 Review -- 2.2 Bochnerโs Linearization Theorem -- 2.3 Slices -- 2.4 Associated Fiber Bundles -- 2.5 Smooth Functions on the Orbit Space -- 2.6 Orbit Types and Local Action Types -- 2.7 The Stratification by Orbit Types -- 2.8 Principal and Regular Orbits -- 2.9 Blowing Up -- 2.10 Exercises -- 2.11 Notes -- 3. Compact Lie Groups -- 3.0 Introduction -- 3.1 Centralizers -- 3.2 The Adjoint Action -- 3.3 Connectedness of Centralizers -- 3.4 The Group of Rotations and its Covering Group -- 3.5 Roots and Root Spaces -- 3.6 Compact Lie Algebras -- 3.7 Maximal Tori -- 3.8 Orbit Structure in the Lie Algebra -- 3.9 The Fundamental Group -- 3.10 The Weyl Group as a Reflection Group -- 3.11 The Stiefel Diagram -- 3.12 Unitary Groups -- 3.13 Integration -- 3.14 The Weyl Integration Theorem -- 3.15 Nonconnected Groups -- 3.16 Exercises -- 3.17 Notes -- 4. Representations of Compact Groups -- 4.0 Introduction -- 4.1 Schurโs Lemma -- 4.2 Averaging -- 4.3 Matrix Coefficients and Characters -- 4.4 G-types -- 4.5 Finite Groups -- 4.6 The Peter-Weyl Theorem -- 4.7 Induced Representations -- 4.8 Reality -- 4.9 Weyl's Character Formula -- 4.10 Weight Exercises -- 4.11 Highest Weight Vectors -- 4.12 The Borel-Weil Theorem -- 4.13 The Nonconnected Case -- 4.14 Exercises -- 4.15 Notes -- References for Chapter Four -- Appendices and Index -- A Appendix: Some Notions from Differential Geometry -- B Appendix: Ordinary Differential Equations -- References for Appendix