Author | Moral, Pierre Del. author |
---|---|
Title | Feynman-Kac Formulae [electronic resource] : Genealogical and Interacting Particle Systems with Applications / by Pierre Del Moral |
Imprint | New York, NY : Springer New York, 2004 |
Connect to | http://dx.doi.org/10.1007/978-1-4684-9393-1 |
Descript | XVIII, 556 p. 6 illus. online resource |
1 Introduction -- 1.1 On the Origins of Feynman-Kac and Particle Models -- 1.2 Notation and Conventions -- 1.3 Feynman-Kac Path Models -- 1.4 Motivating Examples -- 1.5 Interacting Particle Systems -- 1.6 Sequential Monte Carlo Methodology -- 1.7 Particle Interpretations -- 1.8 A Contents Guide for the Reader -- 2 Feynman-Kac Formulae -- 2.1 Introduction -- 2.2 An Introduction to Markov Chains -- 2.4 Structural Stability Properties -- 2.5 Distribution Flows Models -- 2.6 Feynman-Kac Models in Random Media -- 2.7 Feynman-Kac Semigroups -- 3 Genealogical and Interacting Particle Models -- 3.1 Introduction -- 3.2 Interacting Particle Interpretations -- 3.3 Particle models with Degenerate Potential -- 3.4 Historical and Genealogical Tree Models -- 3.5 Particle Approximation Measures -- 4 Stability of Feynman-Kac Semigroups -- 4.1 Introduction -- 4.2 Contraction Properties of Markov Kernels -- 4.3 Contraction Properties of Feynman-Kac Semigroups -- 4.4 Updated Feynman-Kac Models -- 5 Invariant Measures and Related Topics -- 5.1 Introduction -- 5.2 Existence and Uniqueness -- 5.3 Invariant Measures and Feynman-Kac Modeling -- 5.4 Feynman-Kac and Metropolis-Hastings Models -- 5.5 Feynman-Kac-Metropolis Models -- 6 Annealing Properties -- 6.1 Introduction -- 6.2 Feynman-Kac-Metropolis Models -- 6.3 Feynman-Kac Trapping Models -- 7 Asymptotic Behavior -- 7.1 Introduction -- 7.2 Some Preliminaries -- 7.3 Inequalities for Independent Random Variables -- 7.4 Strong Law of Large Numbers -- 8 Propagation of Chaos -- 8.1 Introduction -- 8.2 Some Preliminaries -- 8.3 Outline of Results -- 8.4 Weak Propagation of Chaos -- 8.5 Relative Entropy Estimates -- 8.6 A Combinatorial Transport Equation -- 8.7 Asymptotic Properties of Boltzmann-Gibbs Distributions -- 8.8 Feynman-Kac Semigroups -- 9 Central Limit Theorems -- 9.1 Introduction -- 9.2 Some Preliminaries -- 9.3 Some Local Fluctuation Results -- 9.4 Particle Density Profiles -- 9.5 A Berry-Esseen Type Theorem -- 9.6 A Donsker Type Theorem -- 9.7 Path-Space Models -- 9.8 Covariance Functions -- 10 Large-Deviation Principles -- 10.1 Introduction -- 10.2 Some Preliminary Results -- 10.3 Crรกmerโs Method -- 10.4 Laplace-Varadhanโs Integral Techniques -- 10.5 Dawson-Gรคrtner Projective Limits Techniques -- 10.6 Sanovโs Theorem -- 10.7 Path-Space and Interacting Particle Models -- 10.8 Particle Density Profile Models -- 11 Feynman-Kac and Interacting Particle Recipes -- 11.1 Introduction -- 11.2 Interacting Metropolis Models -- 11.3 An Overview of some General Principles -- 11.4 Descendant and Ancestral Genealogies -- 11.5 Conditional Explorations -- 11.6 State-Space Enlargements and Path-Particle Models -- 11.7 Conditional Excursion Particle Models -- 11.8 Branching Selection Variants -- 11.9 Exercises -- 12 Applications -- 12.1 Introduction -- 12.2 Random Excursion Models -- 12.3 Change of Reference Measures -- 12.4 Spectral Analysis of Feynman-Kac-Schrรถdinger Semigroups -- 12.5 Directed Polymers Simulation -- 12.6 Filtering/Smoothing and Path estimation -- References