Author | Cannon, John T. author |
---|---|
Title | The Evolution of Dynamics: Vibration Theory from 1687 to 1742 [electronic resource] / by John T. Cannon, Sigalia Dostrovsky |
Imprint | New York, NY : Springer New York, 1981 |
Connect to | http://dx.doi.org/10.1007/978-1-4613-9461-7 |
Descript | IX, 184 p. online resource |
1. Introduction -- 2. Newton (1687) -- 2.1. Pressure Wave -- 2.2. Remarks -- 3. Taylor (1713) -- 3.1. Vibrating String -- 3.2. Absolute Frequency -- 3.3. Remarks -- 4. Sauveur (1713) -- 4.1. Vibrating String -- 4.2. Remarks -- 5. Hermann (1716) -- 5.1. Pressure Wave -- 5.2. Vibrating String -- 5.3. Remarks -- 6. Cramer (1722) -- 6.1. Sound -- 6.2. Remarks -- 7. Euler (1727) -- 7.1. Vibrating Ring -- 7.2. Sound -- 8. Johann Bernoulli (1728) -- 8.1. Vibrating String (Continuous and Discrete) -- 8.2. Remark on the Energy Method -- 9. Daniel Bernoulli (1733; 1734); Euler (1736) โฆ. -- 9.1. Linked Pendulum and Hanging Chain -- 9.2. Laguerre Polynomials and J0 -- 9.3. Double and Triple Pendula -- 9.4. Roots of Polynomials -- 9.5. Zeros of J0 -- 9.6. Other Boundary Conditions -- 9.7. The Bessel Functions Jv -- 10. Euler (1735) -- 10.1. Pendulum Condition -- 10.2. Vibrating Rod -- 10.3. Remarks -- 11. Johann II Bernoulli (1736) -- 11.1. Pressure Wave -- 11.2. Remarks -- 12. Daniel Bernoulli (1739; 1740) -- 12.1. Floating Body -- 12.2. Remarks -- 12.3. Dangling Rod -- 12.4. Remarks on Superposition -- 13. Daniel Bernoulli (1742) -- 13.1. Vibrating Rod -- 13.2. Absolute Frequency and Experiments -- 13.3. Superposition -- 14. Euler (1742) -- 14.1. Linked Compound Pendulum -- 14.2. Dangling Rod and Weighted Chain -- 15. Johann Bernoulli (1742) no -- 15.1. One Degree of Freedom -- 15.2. Dangling Rod -- 15.3. Linked Pendulum I -- 15.4. Linked Pendulum II -- Appendix: Daniel Bernoulliโs Papers on the Hanging Chain and the Linked Pendulum -- Theoremata de Oscillationibus Corporum -- De Oscillationibus Filo Flexili Connexorum -- Theorems on the Oscillations of Bodies -- On the Oscillations of Bodies Connected by a Flexible Thread