Author | Walker, Peter Leslie. author |
---|---|
Title | Examples and Theorems in Analysis [electronic resource] / by Peter Leslie Walker |
Imprint | London : Springer London : Imprint: Springer, 2004 |
Connect to | http://dx.doi.org/10.1007/978-0-85729-380-0 |
Descript | X, 287 p. online resource |
1. Sequences -- 1.1 Examples, Formulae and Recursion -- 1.2 Monotone and Bounded Sequences -- 1.3 Convergence -- 1.4 Subsequences -- 1.5 Cauchy Sequences -- Exercises -- 2. Functions and Continuity -- 2.1 Examples -- 2.2 Monotone and Bounded Functions -- 2.3 Limits and Continuity -- 2.4 Bounds and Intermediate Values -- 2.5 Inverse Functions -- 2.6 Recursive Limits and Iteration -- 2.7 One-Sided and Infinite Limits. Regulated Functions -- 2.8 Countability -- Exercises -- 3. Differentiation -- 3.1 Differentiable Functions -- 3.2 The Significance of the Derivative -- 3.3 Rules for Differentiation -- 3.4 Mean Value Theorems and Estimation -- 3.5 More on Iteration -- 3.6 Optimisation -- Exercises -- 4. Constructive Integration -- 4.1 Step Functions -- 4.2 The Integral of a Regulated function -- 4.3 Integration and Differentiation -- 4.4 Applications -- 4.5 Further Mean Value Theorems -- Exercises -- 5. Improper Integrals -- 5.1 Improper Integrals on an Interval -- 5.2 Improper Integrals at Infinity -- 5.3 The Gamma function -- Exercises -- 6. Series -- 6.1 Convergence -- 6.2 Series with Positive Terms -- 6.3 Series with Arbitrary Terms -- 6.4 Power Series -- 6.5 Exponential and Trigonometric Functions -- 6.6 Sequences and Series of Functions -- 6.7 Infinite Products -- Exercises -- 7. Applications -- 7.1 Fourier Series -- 7.2 Fourier Integrals -- 7.3 Distributions -- 7.4 Asymptotics -- 7.5 Exercises -- A. Fubiniโs Theorem -- B. Hints and Solutions for Exercises