Author | Lubotzky, Alexander. author |
---|---|
Title | Subgroup Growth [electronic resource] / by Alexander Lubotzky, Dan Segal |
Imprint | Basel : Birkhรคuser Basel, 2003 |
Connect to | http://dx.doi.org/10.1007/978-3-0348-8965-0 |
Descript | XXII, 454 p. 4 illus. online resource |
0 Introduction and Overview -- 0.1 Preliminary comments and definitions -- 0.2 Overview of the chapters -- 0.3 On CFSG -- 0.4 The windows -- 0.5 The โnotesโ -- 1 Basic Techniques of Subgroup Counting -- 1.1 Permutation representations -- 1.2 Quotients and subgroups -- 1.3 Group extensions -- 1.4 Nilpotent and soluble groups -- 1.5 Abelian groups I -- 1.6 Finite p-groups -- 1.7 Sylowโs theorem -- 1.8 Rest riet ing to soluble subgroups -- 1.9 Applications of the โminimal indexโ -- 1.10 Abelian groups II -- 1.11 Growth types -- Notes -- 2 Free Groups -- 2.1 The subgroup growth of free groups -- 2.2 Subnormal subgroups -- 2.3 Counting d-generator finite groups -- Notes -- 3 Groups with Exponential Subgroup Growth -- 3.1 Upper bounds -- 3.2 Lower bounds -- 3.3 Free pro-p groups -- 3.4 Normal subgroups in free pro-p groups -- 3.5 Relations in p-groups and Lie algebras -- Notes -- 4 Pro-p Groups -- 4.1 Pro-p groups with polynomial subgroup growth -- 4.2 Pro-p groups with slow subgroup growth -- 4.3 The groups $$SL_r̂1({\mathbb{F}_p}[[t]])$$ -- 4.4 A-perfect groups -- 4.5 The Nottingham group -- 4.6 Finitely presented pro-p groups -- Notes -- 5 Finitely Generated Groups with Polynomial Subgroup Growth -- 5.1 Preliminary observations -- 5.2 Linear groups with PSG -- 5.3 Upper chief factors -- 5.4 Groups of prosoluble type -- 5.5 Groups of finite upper rank -- 5.6 The degree of polynomial subgroup growth -- Notes -- 6 Congruence Subgroups -- 6.1 The characteristic 0 case -- 6.2 The positive characteristic case -- 6.3 Perfect Lie algebras -- 6.4 Normal congruence subgroups -- Notes -- 7 The Generalized Congruence Subgroup Problem -- 7.1 The congruence subgroup problem -- 7.2 Subgroup growth of lattices -- 7.3 Counting hyperbolic manifolds -- Notes -- 8 Linear Groups -- 8.1 Subgroup growth, characteristic 0 -- 8.2 Residually nilpotent groups -- 8.3 Subgroup growth, characteristic p -- 8.4 Normal subgroup growth -- Notes -- 9 Soluble Groups -- 9.1 Metabelian groups -- 9.2 Residually nilpotent groups -- 9.3 Some finitely presented metabelian groups -- 9.4 Normal subgroup growth in metabelian groups -- Notes -- 10 Profinite Groups with Polynomial Subgroup Growth -- 10.1 Upper rank -- 10.2 Profinite groups with wPSG: structure -- 10.3 Quasi-semisimple groups -- 10.4 Profinite groups with wPSG: characterization -- 10.5 Weak PSG = PSG -- Notes -- 11 Probabilistic Methods -- 11.1 The probability measure -- 11.2 Generation probabilities -- 11.3 Maximal subgroups -- 11.4 Further applications -- 11.5 Pro-p groups -- Notes -- 12 Other Growth Conditions -- 12.1 Rank and bounded generation -- 12.2 Adelic groups -- 12.3 The structure of finite linear groups -- 12.4 Composition factors -- 12.5 BG, PIG and subgroup growth -- 12.6 Residually nilpotent groups -- 12.7 Arithmetic groups and the CSP -- 12.8 Examples -- Notes -- 13 The Growth Spectrum -- 13.1 Products of alternating groups -- 13.2 Some finitely generated permutation groups -- 13.3 Some profinite groups with restricted composition factors -- 13.4 Automorphisms of rooted trees -- Notes -- 14 Explicit Formulas and Asymptotics -- 14.1 Free groups and the modular group -- 14.2 Free products of finite groups -- 14.3 Modular subgroup arithmetic -- 14.4 Surface groups -- Notes -- 15 Zeta Functions I: Nilpotent Groups -- 15.1 Local zeta functions as p-adic integrals -- 15.2 Alternative methods -- 15.3 The zeta function of a nilpotent group -- Notes -- 16 Zeta Functions II: p-adic Analytic Groups -- 16.1 Integration on pro-p groups -- 16.2 Counting subgroups in a p-adic analytic group -- 16.3 Counting orbits -- 16.4 Counting p-groups -- Notes -- Windows -- 1 Finite Group Theory -- 2 Finite Simple Groups -- 3 Permutation Groups -- 4 Profinite Groups -- 5 Pro-p Groups -- 6 Soluble Groups -- 7 Linear Groups -- 8 Linearity Conditions for Infinite Groups -- 9 Strong Approximation for Linear Groups -- 10 Primes -- 11 Probability -- 12 p-adic Integrals and Logic -- Open Problems