Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

TitlePhotosensitive Molecules for Controlling Biological Function [electronic resource]
Author edited by James J. Chambers, Richard H. Kramer
ImprintTotowa, NJ : Humana Press, 2011
Connect to
Descript XIV, 298p. online resource


The development of new photochemical tools, some synthesized by chemists and some provided by nature, is rapidly changing the way neurobiological research is performed in the modern laboratory.  In Photosensitive Molecules for Controlling Biological Function, expert researchers in the field examine the most cutting-edge tools currently available.  Divided into three sections, this detailed compendium features techniques involving natural photosensitive proteins, caged neurotransmitters, and small molecule photoswitches that bestow light sensitivity on ion channels and receptors.  Written for the Neuromethods series, this volume features the type of meticulous description and implementation advice that is crucial for getting optimal results in the lab.   Authoritative and practical, Photosensitive Molecules for Controlling Biological Function provides an unbiased comparison of the various photochemical tools currently available for controlling neuronal activity in order to aid scientists in the vital goal of choosing the right tools for the right job


Introduction to Part I: Caged Neurotransmitters -- Targeting and Excitation of Photoactivatable Molecules: Design Considerations for Neurophysiology Experiments -- Are Caged Compounds Still Useful? -- Chromophores for the Delivery of Bioactive Molecules with Two-Photon Excitation -- Introduction to Part II: Natural Photosensitive Proteins -- Light-Activated Ion Pumps and Channels for Temporally-Precise Optical Control of Activity in Genetically-Targeted Neurons -- Vertebrate and Invertebrate Rhodopsins: Light Control of G Protein Signaling -- Restoring Visual Function after Photoreceptor Degeneration: Ectopic Expression of Photosensitive Proteins in Retinal Neurons -- Introduction to Part III: Small Molecule Photoswitches -- Photoswitch Design -- Photoswitchable Voltage-Gated Ion Channels -- Optical Manipulation of Protein Activity and Protein Interactions Using Caged Proteins and Optical Switch Protein Conjugates -- Structure-Based Design of Light-Controlled Proteins -- Photoswitchable Ligand-Gated Ion Channels

Medicine Neurosciences Neurochemistry Neurobiology Biomedicine Neurosciences Neurobiology Neurochemistry


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram