Title | Handbook of Biological Confocal Microscopy [electronic resource] / edited by James B. Pawley |
---|---|
Imprint | Boston, MA : Springer US, 1990 |
Connect to | http://dx.doi.org/10.1007/978-1-4615-7133-9 |
Descript | XIII, 232 p. online resource |
1: Foundations of Confocal Scanned Imaging in Light Microscopy -- Light microscopy -- Lateral resolution -- Axial resolution -- Depth of field -- Confocal imaging -- Impact of video -- The Nipkow disk -- Electron-beam scanning TV -- Impact of modern video -- Lasers and microscopy Holography -- Laser illumination -- Laser-illuminated confocal microscopes -- Laser scanning confocal microscope -- Is laser scanning confocal microscopy a cure-all? -- Speed of image or data acquisition -- Depth of field in phase dependent imaging -- Some other optical and mechanical factors affecting confocal microscopy -- Lens aberration -- Unintentional beam deviation -- Note added in proof -- Acknowledgment -- References -- 2: Fundamental Limits in Confocal Microscopy -- What limits? -- Counting statistics -- Source brightness -- Specimen response -- A typical problem -- Practical photon efficiency -- Losses in the optical system -- Objectives -- Mirrors -- Pinhole -- Is the confocal pinhole a โgood thingโ? -- Features of the confocal pinhole -- Detection and measurement losses -- The detector -- The PMT -- Solid-state photon detectors -- Digitization -- Evaluating photon efficiency -- Resolution: how much is enough? -- Can resolution be too high? -- Limitations imposed by spatial and temporal quantization -- Aliasing -- Pixel shape -- Blind spots -- Practical considerations relating resolution to distortion -- Summary -- Acknowledgements -- References -- 3: Quantitative Fluorescence Imaging with Laser Scanning Confocal Microscopy -- The promise of scanning confocal fluorescence microscopy -- Optical transfer efficiency -- Methods of measurement of optical transfer efficiencies -- Confocal spatial filtering for depth of field compromises optical transfer efficiency -- Optical aberrations in fluorescence LSCM -- Chromatic aberrations in fluorescence LSCM measurements -- Photodynamic effects -- Theory -- Population rate equations -- Experiment -- Fluorescence photobleaching recovery with LSCM -- Conclusion -- Acknowledgments -- References -- 4: The Pixelated Image -- Pixelation -- Optical resolution: the resel -- Pixel -- Gray level -- In between -- Matching image spatial characteristics -- The Nyquist theorem -- Hyper-resolution: oversampling -- The resel/pixel ratio -- Diagonal dropout -- Pixel shape distortion -- Aliasing -- The mechanics of pixelation -- Matching image intensity characteristics -- Gray scale -- Detection -- Display -- Color displays -- Caveats -- Spectral variation of detectors -- Automatic gain control -- Strategy for magnification and resolution -- Acknowledgements -- References -- 5: Laser Sources for Confocal Microscopy -- Laser power requirements -- The basic laser -- Principle of operation -- Laser modes: longitudinal and transversal -- Polarization -- Coherent properties of laser light -- Temporal coherence -- Coherence length -- Spatial coherence -- Coherence surface -- Coherence volume -- Pumping power requirements -- Heat removal -- Other installation requirements -- Types of lasers -- Continuous wave (cw) lasers -- Gas lasers -- Argon-ion -- Krypton -- Helium-neon -- Helium-cadmium -- Dye lasers -- Solid state lasers -- Semiconductor or diode injection lasers -- Diode-pumped lasers -- Tunable solid state laser -- Pulsed lasers -- Nitrogen lasers -- Excimer lasers -- Metal vapor lasers -- Q-switched lasers -- Trends in time-resolved spectroscopy applied to microscopy -- Wavelength expansion through non-linear techniques -- Spatial beam characteristics -- Intensity fluctuations of cw lasers -- Maintenance -- Maintenance of active laser media -- Laser tubes -- Gases -- Dyes -- Laser rods -- Maintenance of pumping media -- Maintenance of the optical resonator -- Maintenance of other system components -- Cooling water -- External optics -- Safety precautions -- Curtains -- Screens -- Beam stops -- Acknowledgement -- References -- 6: Non-Laser Illumination for Confocal Microscopy -- Why use non-laser sources? -- Wavelength -- Coherence -- Which types of confocal microscope can use nonlaser sources? -- Characteristics of non-laser light sources -- Wavelengths available -- Source radiance -- Source stability -- Source coherence -- Source distribution -- Collecting the light and relaying it to specimen -- Illumination of the specimen: a basic part of microscopy -- Tandem scanning: basic description -- Single-sided disk scanning: basic description -- How do you uniformly illuminate both the objective back focal plane and the intermediate image plane? -- Scrambling and filtering the light -- Measuring what comes through the illumination system -- Exposure time and source brightness -- Stationary specimens -- What if the specimen is moving or changing? -- Incoherent laser light sources for confocal microscopy -- References -- 7: Objective Lenses for Confocal Microscopy -- Abstract -- Aberrations of refractive systems -- Defocusing -- Monochromatic aberrations -- Spherical aberrations -- Coma -- Astigmatism -- Flatness of field -- Distortion -- Chromatic aberrations -- Longitudinal chromatic aberration -- Lateral chromatic aberration (LCA) or chromatic magnification difference -- Finite versus infinity optics -- Optical materials -- Anti-reflection coatings -- Conclusion -- 8: Size and Shape of the Confocal Spot: Control and Relation to 3d Imaging And Image Processing -- Abstract -- Pinholes and optical probe formation -- Practical use of variable pinholes -- Experimental axial confocal response -- Comments and conclusions -- References -- 9: The Intermediate Optical System of Laser-Scanning Confocal Microscopes -- Design principles of confocal systems -- Overview -- Microscope objectives -- Position of the pivot point -- Position of the detector pinhole -- Practical requirements -- Illumination -- Detection -- Distortion -- Evaluation of illumination/detection systems -- Influence of optical elements on the properties of light -- Errors caused by optical elements -- Evaluation of optical arrangements -- Evaluation of scanner arrangements -- Disk scanners -- Object scanners -- Attachment to microscopes -- Merit functions -- Requirements for multi-tluorescence experiments -- Special optical elements -- Multi-mode optical glass fibers -- Single-mode polarization-preserving glass fibers -- Polarizing elements -- Mechanical scanners -- Acousto-optical scanners -- Conclusions -- Acknowledgements -- References -- 10: Intermediate Optics in Nipkow Disk Microscopes -- The tandem scanning reflected light microscope (TSRLM) -- The real-time scanning optical microscope (RSOM) -- Images of the eye -- Pinhole size -- Pinhole spacing -- Illumination efficiency and reflection from the disk -- Internal reflections -- Acknowledgements -- References -- 11: The Role of the Pinhole in Confocal Imaging Systems -- The optical sectioning property -- The optical sectioning property with a finite-sized circular detector and coherent light -- Lateral resolution as a function of effective detector size -- The role of aberrations -- Images with a finite-sized detector 118 Extended-focus and auto-focus imaging with a finite-sized detector -- Height imaging with a finite-sized pinhole -- Alternative detector geometries -- Noise -- Fluorescence imaging -- Conclusions -- References -- 12: Photon Detectors for Confocal Microscopy -- The quantal nature of light -- Interaction of photons with materials -- Photoconductivity -- Photovoltaic -- Charge coupled devices -- Photoemissive -- Image dissector l -- Micro channel plate -- Noise internal to detectors -- Statistics of photon flux and detectors -- Representing the pixel value -- Conversion techniques -- Assessment of devices -- Point detection optimization -- Field detection optimization -- Detectors present and future -- References -- 13: Manipulation, Display, and Analysis of three-Dimensional Biological Images -- Storage of three-dimensional image data -- Image enhancement -- Linear filters -- Median filters -- Local contrast enhancement -- Gradient method -- Processing methods for displaying 3D data -- Stereo images -- 3D rotations -- Rotated projections -- Pixar displays -- Contour surface representation -- Graphic system for 3D image display and analysis -- Details of PRISMโs design and implementation -- The window system -- Digital movies -- Choice of display hardware -- Model building in PRISM -- Model building -- Superimposing the model on a background image -- Future development and discussion -- Acknowledgements -- References -- 14: Three-Dimensional Imaging on Confocal and Wide-Field Microscopes -- Signal to noise ratio and resolution -- Signal strength, photo-damage and photo-bleaching -- Optical transfer function, resolution and noise -- Three-dimensional image restoration and confocal microscopy: a comparison -- Image restoration methodology -- Requirements -- Results -- Multiple detector confocal miscroscopes -- Conclusions and recommendations -- Computer graphics 3D visualization -- Display of 2D slices of 3D data -- Volume displays -- Surface model displays -- 3D perception from 2D displays -- User interaction and analysis -- Automated image analysis: feature extraction and computer vision -- Thresholding -- Human interaction and partial automation -- Fully automated analysis -- Computer hardware considerations -- Image acquisition -- Image restoration -- Image analysis and display -- Archival storage -- Magnetic disks -- Cartridge magnetic tape -- Reel magnetic tape -- Optical disk -- Networking -- Conclusion -- References -- 15: Direct Recording of Stereoscopic Pairs Obtained Directly from Disk Scanning Confocal Light Microscopes -- Summary -- Use of a confocal microscope to reduce the depth of field -- Optical sectioning in the TSRLM -- Direct photographic recording of the stereo-pair -- Means for stereo imaging of a layer inside a bulk -- Fixed tilt angle difference: hand-operated device -- DC micromotor-controlled stage -- Piezo-electric control of the len