Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

TitleTopics in Nevanlinna Theory [electronic resource] / edited by Serge Lang, William Cherry
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1990
Connect to
Descript CLXXXIV, 180 p. online resource


These are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry


Nevanlinna theory in one variable -- Equidimensional higher dimensional theory -- Nevanlinna Theory for Meromorphic Functions on Coverings of C -- Equidimensional Nevanlinna Theory on Coverings of Cn

Mathematics Algebraic geometry Mathematical analysis Analysis (Mathematics) Differential geometry Number theory Mathematics Analysis Differential Geometry Algebraic Geometry Number Theory


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram