Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorFavre, Charles. author
TitleThe Valuative Tree [electronic resource] / by Charles Favre, Mattias Jonsson
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 2004
Connect tohttp://dx.doi.org/10.1007/b100262
Descript XVI, 244 p. online resource

SUMMARY

This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest


CONTENT

1 Generalities -- 1.1 Setup -- 1.2 Valuations -- 1.3 Krull Valuations -- 1.4 Plane Curves -- 1.5 Examples of Valuations -- 1.6 Valuations Versus Krull Valuations -- 1.7 Sequences of Blowups and Krull Valuations -- 2 MacLaneโ{128}{153}s Method -- 2.1 Sequences of Key Polynomials -- 2.2 Classification -- 2.3 Graded Rings and Numerical Invariants -- 2.4 From Valuations to SKPโ{128}{153}s -- 2.5 A Computation -- 3 Tree Structures -- 3.1 Trees -- 3.2 Nonmetric Tree Structure on V -- 3.3 Parameterization of V by Skewness -- 3.4 Multiplicities -- 3.5 Approximating Sequences -- 3.6 Thinness -- 3.7 Value Semigroups and Approximating Sequences -- 3.8 Balls of Curves -- 3.9 The Relative Tree Structure -- 4 Valuations Through Puiseux Series -- 4.1 Puiseux Series and Valuations -- 4.2 Tree Structure -- 4.3 Galois Action -- 4.4 A Tale of Two Trees -- 4.5 The Berkovich Projective Line -- 4.6 The Bruhat-Tits Metric -- 4.7 Dictionary -- 5 Topologies -- 5.1 The Weak Topology -- 5.2 The Strong Topology on V -- 5.3 The Strong Topology on Vqm -- 5.4 Thin Topologies -- 5.5 The Zariski Topology -- 5.6 The Hausdorff-Zariski Topology -- 5.7 Comparison of Topologies -- 6 The Universal Dual Graph -- 6.1 Nonmetric Tree Structure -- 6.2 Infinitely Near Points -- 6.3 Parameterization and Multiplicity -- 6.4 The Isomorphism -- 6.5 Proof of the Isomorphism -- 6.6 Applications -- 6.7 The Dual Graph of the Minimal Desingularization -- 6.8 The Relative Tree Structure -- 7 Tree Measures -- 7.1 Outline -- 7.2 More on the Weak Topology -- 7.3 Borel Measures -- 7.4 Functions of Bounded Variation -- 7.5 Representation Theorem I -- 7.6 Complex Tree Potentials -- 7.7 Representation Theorem II -- 7.8 Atomic Measures -- 7.9 Positive Tree Potentials -- 7.10 Weak Topologies and Compactness -- 7.11 Restrictions to Subtrees -- 7.12 Inner Products -- 8 Applications of the Tree Analysis -- 8.1 Zariskiโ{128}{153}s Theory of Complete Ideals -- 8.2 The Voรปte รฉtoilรฉe -- A Infinitely Singular Valuations -- A.1 Characterizations -- A.2 Constructions -- B The Tangent Space at a Divisorial Valuation -- C Classification -- D Combinatorics of Plane Curve Singularities -- D.1 Zariskiโ{128}{153}s Terminology for Plane Curve Singularities -- D.2 The Eggers Tree -- E.1 Completeness -- E.2 The Residue Field -- References


Mathematics Algebraic geometry Commutative algebra Commutative rings Topology Discrete mathematics Mathematics Discrete Mathematics Algebraic Geometry Commutative Rings and Algebras Topology



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram