Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorYomdin, Yosef. author
TitleTame Geometry with Application in Smooth Analysis [electronic resource] / by Yosef Yomdin, Georges Comte
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 2004
Connect to
Descript CC, 190 p. online resource


The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation


Preface -- Introduction and Content -- Entropy -- Multidimensional Variations -- Semialgebraic and Tame Sets -- Some Exterior Algebra -- Behavior of Variations under Polynomial Mappings -- Quantitative Transversality and Cuspidal Values for Polynomial Mappings -- Mappings of Finite Smoothness -- Some Applications and Related Topics -- Glossary -- References

Mathematics Algebraic geometry Measure theory Functions of real variables Functions of complex variables Mathematics Algebraic Geometry Measure and Integration Real Functions Several Complex Variables and Analytic Spaces


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram