Author | Green, James A. author |
---|---|

Title | Polynomial Representations of GLn [electronic resource] / by James A. Green |

Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1980 |

Connect to | http://dx.doi.org/10.1007/BFb0092296 |

Descript | VIII, 120 p. online resource |

SUMMARY

The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth

CONTENT

Preface to the second edition -- J. A. Green: Polynomial representations of GLn: 1.Introduction -- 2.Polynomial representations of GL_n(K): The Schur algebra -- 3.Weights and characters -- 4.The module D_{\lambda, K} -- 5.The Carter-Lusztig modules V_{\lambda, K} -- 6.Representation theory of the symmetric group -- Appendix on Schensted correspondence and Littelmann paths by K. Erdmann, J. A. Green and M. Schocker: A. Introduction -- B. The Schensted process -- C. Schensted and Littelmann -- D. Theorem A and some of its consequences -- E. Tables -- Index of Symbols -- References -- Index

Mathematics
Functions of real variables
Mathematics
Real Functions