AuthorImayoshi, Yoichi. author
TitleAn Introduction to Teichmรผller Spaces [electronic resource] / by Yoichi Imayoshi, Masahiko Taniguchi
ImprintTokyo : Springer Japan, 1992
Connect tohttp://dx.doi.org/10.1007/978-4-431-68174-8
Descript XIII, 279 p. online resource

CONTENT

1 Teichmรผller Space of Genus g -- 1.1 Riemann Surfaces -- 1.2 Teichmรผller Space of Genus 1 -- 1.3 Teichmรผller Space of Genus g -- 1.4 Quasiconformal Mappings and Teichmรผller Space -- 1.5 Complex Structures and Conformal Structures -- Notes -- 2 Frike Space -- 2.1 Uniformization Theorem -- 2.2 Universal Coverings -- 2.3 Mรถbius Transformations -- 2.4 Fuchsian Models -- 2.5 Fricke Space -- Notes -- 3 Hyperbolic Geometry and Fenchel-Nielsen Coordinates -- 3.1 Poincarรฉ Metric and Hyperbolic Geometry -- 3.2 Fenchel-Nielsen Coordinates -- 3.3 Fricke-Klein Embedding -- 3.4 Thurstonโs Compactification -- Notes -- 4 Quasiconformal Mappings -- 4.1 Definitions and Elementary Properties -- 4.2 Existence Theorems on Quasiconformal Mappings -- 4.3 Dependence on Beltrami Coefficients -- 4.4 Proof of Calderรณn-Zygmund Theorem -- Notes -- 5 Teichmรผller Spaces -- 5.1 Analytic Construction of Teichmรผller Spaces -- 5.2 Teichmรผller Mappings and Teichmรผllerโs Theorerms -- 5.3 Proof of Teichmรผllerโs Uniqueness Theorem -- Notes -- 6 Complex Analytic Theory of Teichmรผller Spaces -- 6.1 Bersโ Embedding -- 6.2 Invariance of Complex Structure of Teichmรผller Space -- 6.3 Teichmรผller Modular Groups -- 6.4 Roydenโs Theorems -- 6.5 Classification of Teichmรผller Modular Transformations -- Notes -- 7 Weil-Petersson Metric -- 7.1 Petersson Scalar Product and Bergman Projection -- 7.2 Infinitesimal Theory of Teichmรผller Spaces -- 7.3 Weil-Petersson Metric -- Notes -- 8 Fenchel-Nielsen Deformations and Weil-Petersson Metric -- 8.1 Fenchel-Nielsen Deformations -- 8.2 A Variational Formula for Geodesic Length Functions -- 8.3 Wolpertโs Formula -- Notes -- Appendices -- A Classical Variations on Riemann Surfaces -- Notes -- B Compactification of the Moduli Space -- Notes -- References -- List of Symbols


SUBJECT

  1. Mathematics
  2. Algebraic geometry
  3. Mathematical analysis
  4. Analysis (Mathematics)
  5. Differential geometry
  6. Physics
  7. Mathematics
  8. Analysis
  9. Algebraic Geometry
  10. Differential Geometry
  11. Theoretical
  12. Mathematical and Computational Physics