Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

Authorร{156}stรผnel, Ali Sรผleyman. author
TitleTransformation of Measure on Wiener Space [electronic resource] / by Ali Sรผleyman ร{156}stรผnel, Moshe Zakai
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000
Connect to
Descript XIII, 298 p. online resource


This book gives a systematic presentation of the main results on the transformation of measure induced by shift transformations on Wiener space. This topic has its origins in the work of Cameron and Martin (anticipative shifts, 1940's) and that of Girsanov (non-anticipative shifts, 1960's). It played an important role in the development of non-anticipative stochastic calculus and itself developed under the impulse of the stochastic calculus of variations. The recent results presented in the book include a dimension-free form of the Girsanov theorem, the transformations of measure induced by anticipative non-invertible shift transformations, the transformation of measure induced by flows, the extension of the notions of Sard lemma and degree theory to Wiener space, generalized distribution valued Radon-Nikodym theorems and measure preserving transformations. Basic probability theory and the Ito calculus are assumed known; the necessary results from the Malliavin calculus are presented in the appendix. Aimed at graduate students and researchers, it can be used as a text for a course or a seminar


1. Some Background Material and Preliminary Results -- 2. Transformation of Measure Induced by Adapted Shifts -- 3. Transformation of Measure Induced by General Shifts -- 4. The Sard Inequality -- 5. Transformation of Measure Under Anticipative Flows -- 6. Monotone Shifts -- 7. Generalized Radon-Nikodym Derivatives -- 8. Random Rotations -- 9. The Degree Theorem on Wiener Space -- A. Some Inequalities -- A.1 Gronwall and Young Inequalities -- A.1.1 Gronwall Inequality -- A.1.2 Young Inequality -- B. An Introduction to Malliavin Calculus -- B.1 Introduction to Abstract Wiener Space -- B.2 An Introduction to Analysis on Wiener Space -- B.3 Construction of Sobolev Derivatives -- B.4 The Divergence -- B.5 Ornstein-Uhlenbeck Operator and Meyer Inequalities -- B.6 Some Useful Lemmas -- B.7 Local Versus Global Differentiability of Wiener Functionals -- B.8 Exponential Integrability of Wiener Functionals and Poincarรฉ Inequality -- Notes and References -- References -- Notations

Mathematics Functional analysis Measure theory Probabilities Mathematics Measure and Integration Functional Analysis Probability Theory and Stochastic Processes


Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network


facebook   instragram