Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorBunimovich, L. A. author
TitleHard Ball Systems and the Lorentz Gas [electronic resource] / by L. A. Bunimovich, D. Burago, N. Chernov, E. G. D. Cohen, C. P. Dettmann, J. R. Dorfman, S. Ferleger, R. Hirschl, A. Kononenko, J. L. Lebowitz, C. Liverani, T. J. Murphy, J. Piasecki, H. A. Posch, N. Simรกnyi, Ya. Sinai, D. Szรกsz, T. Tรฉl, H. van Beijeren, R. van Zon, J. Vollmer, L. S. Young ; edited by D. Szรกsz
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000
Connect tohttp://dx.doi.org/10.1007/978-3-662-04062-1
Descript VIII, 458 p. online resource

SUMMARY

Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic topics: hyperbolicity and ergodicity, correlation decay, Lyapunov exponents, Kolmogorov-Sinai entropy, entropy production, irreversibility. This collection is a unique introduction into the subject for graduate students, postdocs or researchers - in both mathematics and physics - who want to start working in the field


CONTENT

Part I. Mathematics: D. Burago et al.: A Geometric Approach to Semi-Dispersing Billiards; T.J. Murphy et al.: On the Sequences of Collisions Among Hard Spheres in Infinite Space; N. Simรกnyi: Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity; N. Chernov et al.: Decay of Correlations for Lorentz Gases and Hard Balls; N. Chernov: Entropy Values and Entropy Bounds; L.A. Bunimovich: Existence of Transport Coefficients; C. Liverani: Interacting Particles; J.L. Lebowitz et al.: Scaling Dynamics of a Massive Piston in an Ideal Gas -- Part II. Physics: H. van Beijeren et al.: Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy, and the Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random Lorentz Gases; H.A. Posch et al.: Simulation of Billiards and of Hard-Body Fluids; C.P. Dettmann: The Lorentz Gas: a Paradigm for Nonequilibrium Stationary States; T. Tรฉl et al.: Entropy Balance, Multibaker Maps, and the Dynamics of the Lorentz Gas -- Appendix D. Szรกsz: Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?


Mathematics Mathematical analysis Analysis (Mathematics) Probabilities Physics Mathematics Probability Theory and Stochastic Processes Theoretical Mathematical and Computational Physics Analysis



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram