Author | MacDonald, Norman. author |
---|---|
Title | Time Lags in Biological Models [electronic resource] / by Norman MacDonald |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1978 |
Connect to | http://dx.doi.org/10.1007/978-3-642-93107-9 |
Descript | VIII, 114 p. online resource |
1. Introduction -- a. Discrete and Distributed Lag -- b. Origin of Lags in Biological Models -- c. Lag as an Alternative to Age Structure -- d. Lag as an Alternative to Spatial Structure -- e. The Effects of Lag -- f. Lags and Stochastic Models -- 2. Stability Analysis -- a. The Linear Chain Trick -- b. Instantaneous Models -- c. Models with a Single Discrete Lag -- d. Models with a Single Distributed Lag -- e. An Inequality for Distributed Lag -- f. The Monod Chemostat Model -- g. Mayโs Model of Obligate Mutualism -- 3. Periodic Solutions -- a. Periodic Solutions of the Linear Chain Equations -- b. The Method of Hastings, Tyson and Webster -- c. Hopf Bifurcation -- d. Numerical Integration -- 4. Logistic Growth of a Single Species -- a. Discrete Lag -- b. Distributed Lag in a Model of a Self-poisoning Population -- c. Linear Chain Calculations -- d. Hopf and H.T.W. Methods -- e. Constant Harvesting of a Population in the Presence of Lag -- f. Poincarรฉ-Lindstedt Method for Discrete Lag -- g. An Epidemic Model Related to the Logistic Equation -- 5. Biochemical Oscillator Model -- a. The Goodwin Model -- b. Necessary Condition for Instability -- c. Expanding the Set of Equations -- d. A Single Goodwin Equation with Lag -- e. Discrete Lag in the Goodwin Equation -- 6. Models of Haemopoiesis -- a. Wheldonโs Model of Chronic Granulocytic Leukemia -- b. Two-lag Models of Cyclical Neutropenia -- c. Time Lag with Attrition; a Model of Cyclical Pancytopenia -- 7. Predation Models of the Volterra Type -- 8. Difference Equation Models -- a. Stability Analysis -- b. Conditions under which Spreading the Lag does not affect Local Stability -- c. Chaos in Discrete Dynamical Systems -- d. Extended Diapause in a Single Species Population Model -- e. Analogous Treatment of a Functional Differential Equation -- Supplementary Bibliography -- References