Author | Hofmann, Karl H. author |
---|---|
Title | Cohomology Theories for Compact Abelian Groups [electronic resource] / by Karl H. Hofmann, Paul S. Mostert |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1973 |
Connect to | http://dx.doi.org/10.1007/978-3-642-80670-4 |
Descript | 236 p. online resource |
I. Algebraic background -- Section 1. On exponential functors -- Section 2. The arithmetic of certain spectral algebras -- Section 3. Some analogues of the results about spectral algebras with dual derivations -- Section 4. The Bockstein formalism -- II. The cohomology of finite abelian groups -- Section 1. Products -- Section 2. Special free resolutions for finite abelian groups -- Section 3. About the cohomology of finite abelian groups in the case of trivial action -- Section 4. Appendix to Section 3: The low dimensions -- III. The cohomology of classifying spaces of compact groups -- Section 1. The functor h -- Section 2. The functor h for finite groups -- IV. Kan extensions of functors on dense categories -- Section 1. Dense categories and continuous functors -- Section 2. Multiplicative Hopf extensions -- V. The cohomological structure of compact abelian groups -- Section 1. The cohomologies of connected compact abelian groups -- Section 2. The space cohomology of arbitrary compact abelian groups -- Section 3. The canonical embedding of ? in hG -- Section 4. Cohomology theories for compact groups over fields as coefficient domains -- Section 5. The structure of h for arbitrary compact abelian groups and integral coefficients -- VI. Appendix. Another construction of the functor h -- Proposition 1. About the graph of < for a topological monoid acting on a space โ Proposition 2. Properties of the Dold-Lashof spectrum -- List of notations