Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorJoseph, Anthony. author
TitleQuantum Groups and Their Primitive Ideals [electronic resource] / by Anthony Joseph
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1995
Connect tohttp://dx.doi.org/10.1007/978-3-642-78400-2
Descript IX, 383 p. online resource

SUMMARY

by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the catยญ egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different apยญ proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature


CONTENT

I. Hopf Algebras -- 1.1 Axioms of a Hopf Algebra -- 1.2 Group Algebras and Enveloping Algebras -- 1.3 Adjoint Action -- 1.4 The Hopf Dual -- 1.5 Comments and Complements -- 2. Excerpts from the Classical Theory -- 2.1 Lie Algebras -- 2.2 Algebraic Lie Algebras -- 2.3 Algebraic Groups -- 2.4 Lie Algebras of Algebraic Groups -- 2.5 Comments and Complements -- 3. Encoding the Cartan Matrix -- 3.1 Quantum Weyl Algebras -- 3.2 The Drinfeld Double -- 3.3 The Rosso Form and the Casimir Invariant -- 3.4 The Classical Limit and the Shapovalev Form -- 3.5 Comments and Complements -- 4. Highest Weight Modules -- 4.1 The Jantzen Filtration and Sum Formula -- 4.2 Kac-Moody Lie Algebras -- 4.3 Integrable Modules for Uq(gc) -- 4.4 Demazure Modules and Product Formulae -- 4.5 Comments and Complements -- 5. The Crystal Basis -- 5.1 Operators in the Crystal Limit -- 5.2 Crystals -- 5.3 Ad-invariant Filtrations, Twisted Actions and the Crystal Basis for Uq(n-) -- 5.4 The Grand Loop -- 5.5 Comments and Complements -- 6. The Global Bases -- 6.1 The ? Operation and the Embedding Theorem -- 6.2 Globalization -- 6.3 The Demazure Property -- 6.4 Littelmannโ{128}{153}s Path Crystals -- 6.5 Comments and Complements -- 7. Structure Theorems for Uq(g) -- 7.1 Local Finiteness for the Adjoint Action -- 7.2 Positivity of the Rosso Form -- 7.3 The Separation Theorem -- 7.4 Noetherianity -- 7.5 Comments and Complements -- 8. The Primitive Spectrum of Uq(g) -- 8.1 The Poincarรฉ Series of the Harmonic Space -- 8.2 Factorization of the Quantum PRV Determinants -- 8.3 Verma Module Annihilators -- 8.4 Equivalence of Categories -- 8.5 Comments and Complements -- 9. Structure Theorems for Rq[G] -- 9.1 Commutativity Relations -- 9.2 Surjectivity and Injectivity Theorems -- 9.3 The Adjoint Action -- 9.4 The R-Matrix -- 9.5 Comments and Complements -- 10. The Prime Spectrum of Rq[G] -- 10.1 Highest Weight Modules -- 10.2 The Quantum Weyl Group -- 10.3 Prime and Primitive Ideals of Rq[G] -- 10.4 Hopf Algebra Automorphisms -- 10.5 Comments and Complements -- A.2 Excerpts from Ring Theory -- A.3 Combinatorial Identities and Dimension Theory -- A.4 Remarks on Constructions of Quantum Groups -- A.5 Comments and Complements -- Index of Notation


Mathematics Algebraic geometry Associative rings Rings (Algebra) Nonassociative rings Topological groups Lie groups Physics Mathematics Non-associative Rings and Algebras Associative Rings and Algebras Topological Groups Lie Groups Algebraic Geometry Theoretical Mathematical and Computational Physics



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram