Author | Ma, Zhi-Ming. author |
---|---|
Title | Introduction to the Theory of (Non-Symmetric) Dirichlet Forms [electronic resource] / by Zhi-Ming Ma, Michael Rรถckner |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1992 |
Connect to | http://dx.doi.org/10.1007/978-3-642-77739-4 |
Descript | VIII, 209 p. online resource |
0 Introduction -- I Functional Analytic Background -- 1 Resolvents, semigroups, generators -- 2 Coercive bilinear forms -- 3 Closability -- 4 Contraction properties -- 5 Notes/References -- II Examples -- 1 Starting point: operator -- 2 Starting point: bilinear form โ finite dimensional case -- 3 Starting point: bilinear form โ infinite dimensional case -- 4 Starting point: semigroup of kernels -- 5 Starting point: resolvent of kernels -- 6 Notes/References -- III Analytic Potential Theory of Dirichlet Forms -- 1 Excessive functions and balayage -- 2 ?-exceptional sets and capacities -- 3 Quasi-continuity -- 4 Notes/References -- IV Markov Processes and Dirichlet Forms -- 1 Basics on Markov processes -- 2 Association of right processes and Dirichlet forms -- 3 Quasi-regularity and the construction of the process -- 4 Examples of quasi-regular Dirichlet forms -- 5 Necessity of quasi-regularity and some probabilistic potential theory -- 6 One-to-one correspondences -- 7 Notes/References -- V Characterization of Particular Processes -- 1 Local property and diffusions -- 2 A new capacity and Hunt processes -- 3 Notes/References -- VI Regularization -- 1 Local compactification -- 2 Consequences โ the transfer method -- 3 Notes/References -- A Some Complements -- 1 Adjoint operators -- 2 The Banach/Alaoglu and Banach/Saks theorems -- 3 Supplement on Ray resolvents and right processes