Author | Hlawka, Edmund. author |
---|---|
Title | Geometric and Analytic Number Theory [electronic resource] / by Edmund Hlawka, Rudolf Taschner, Johannes Schoiรengeier |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1991 |
Connect to | http://dx.doi.org/10.1007/978-3-642-75306-0 |
Descript | X, 238p. 15 illus. online resource |
1. The Dirichlet Approximation Theorem -- Dirichlet approximation theorem โ Elementary number theory โ Pell equation โ Cantor series โ Irrationality of ?(2) and ?(3) โ multidimensional diophantine approximation โ Siegelโs lemma โ Exercises on Chapter 1. -- 2. The Kronecker Approximation Theorem -- Reduction modulo 1 โ Comments on Kroneckerโs theorem โ Linearly independent numbers โ Estermannโs proof โ Uniform Distribution modulo 1 โ Weylโs criterion โ Fundamental equation of van der Corput โ Main theorem of uniform distribution theory โ Exercises on Chapter 2. -- 3. Geometry of Numbers -- Lattices โ Lattice constants โ Figure lattices โ Fundamental region โ Minkowskiโs lattice point theorem โ Minkowskiโs linear form theorem โ Product theorem for homogeneous linear forms โ Applications to diophantine approximation โ Lagrangeโs theorem โ the lattice?(i) โ Sums of two squares โ Blichfeldtโs theorem โ Minkowskiโs and Hlawkaโs theorem โ Rogersโ proof โ Exercises on Chapter 3. -- 4. Number Theoretic Functions -- Landau symbols โ Estimates of number theoretic functions โ Abel transformation โ Eulerโs sum formula โ Dirichlet divisor problem โ Gauss circle problem โ Square-free and k-free numbers โ Vinogradovโs lemma โ Formal Dirichlet series โ Mangoldtโs function โ Convergence of Dirichlet series โ Convergence abscissa โ Analytic continuation of the zeta- function โ Landauโs theorem โ Exercises on Chapter 4. -- 5. The Prime Number Theorem -- Elementary estimates โ Chebyshevโs theorem โ Mertensโ theorem โ Eulerโs proof of the infinity of prime numbers โ Tauberian theorem of Ingham and Newman โ Simplified version of the Wiener-Ikehara theorem โ Mertensโ trick โ Prime number theorem โ The ?-function for number theory in ?(i) โ Heckeโs prime number theorem for ?(i) โ Exercises on Chapter 5. -- 6. Characters of Groups of Residues -- Structure of finite abelian groups โ The character group โ Dirichlet characters โ Dirichlet L-series โ Prime number theorem for arithmetic progressions โ Gauss sums โ Primitive characters โ Theorem of Pรณlya and Vinogradov โ Number of power residues โ Estimate of the smallest primitive root โ Quadratic reciprocity theorem โ Quadratic Gauss sums โ Sign of a Gauss sum โ Exercises on Chapter 6. -- 7. The Algorithm of Lenstra, Lenstra and Lovรกsz -- Addenda -- Solutions for the Exercises -- Index of Names -- Index of Terms