Author | Oden, John T. author |
---|---|
Title | Variational Methods in Theoretical Mechanics [electronic resource] / by John T. Oden, Junuthula N. Reddy |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1983 |
Edition | Second Edition |
Connect to | http://dx.doi.org/10.1007/978-3-642-68811-9 |
Descript | XII, 310 p. online resource |
1. Introduction -- 1.1 The Role of Variational Theory in Mechanics -- 1.2 Some Historical Comments -- 1.3 Plan of Study -- 2. Mathematical Foundations of Classical Variational Theory -- 2.1 Introduction -- 2.2 Nonlinear Operators -- 2.3 Differentiation of Operators -- 2.4 Mean Value Theorems -- 2.5 Taylor Formulas -- 2.6 Gradients of Functionals -- 2.7 Minimization of Functionals -- 2.8 Convex Functionals -- 2.9 Potential Operators and the Inverse Problem -- 2.10 Sobolev Spaces -- 3. Mechanics of Continua- A Brief Review -- 3.1 Introduction -- 3.2 Kinematics -- 3.3 Stress and the Mechanical Laws of Balance -- The Principle of Conservation of Mass -- The Principle of Balance of Linear Momentum -- The Principle of Balance of Angular Momentum -- 3.4 Thermodynamic Principles -- The Principle of Conservation of Energy -- The Clausius-Duhem Inequality -- 3.5 Constitutive Theory -- Rules of Constitutive Theory -- Special Forms of Constitutive Equations -- 3.6 Jump Conditions for Discontinuous Fields -- 4. Complementary and Dual Variational Principles in Mechanics -- 4.1 Introduction -- 4.2 Boundary Conditions and Greenโs Formulas -- 4.3 Examples from Mechanics and Physics -- 4.4 The Fourteen Fundamental Complementary-Dual Principles -- 4.5 Some Complementary-Dual Variational Principles of Mechanics and Physics -- 4.6 Legendre Transformations -- 4.7 Generalized Hamiltonian Theory -- 4.8 Upper and Lower Bounds and Existence Theory -- 4.9 Lagrange Multipliers -- 5. Variational Principles in Continuum Mechanics -- 5.1 Introduction -- 5.2 Some Preliminary Properties and Lemmas -- 5.3 General Variational Principles for Linear Theory of Dynamic Viscoelasticity -- 5.4 Gurtinโs Variational Principles for the Linear Theory of Dynamic Viscoelasticity -- 5.5 Variational Principles for Linear Coupled Dynamic Thermoviscoelasticity -- Linear (Coupled) Thermoelasticity -- 5.6 Variational Principles in Linear Elastodynamics -- 5.7 Variational Principles for Linear Piezoelectric Elastodynamic Problems -- 5.8 Variational Principles for Hyperelastic Materials -- Finite Elasticity -- Quasi-Static Problems -- 5.9 Variational Principles in the Flow Theory of Plasticity -- 5.10 Variational Principles for a Large Displacement Theory of Elastoplasticity -- 5.11 Variational Principles in Heat Conduction -- 5.12 Biotโs Quasi-Variational Principle in Heat Transfer -- 5.13 Some Variational Principles in Fluid Mechanics and Magnetohydrodynamics -- Non-Newtonian Fluids -- Perfect Fluids -- An Alternate Principle for Invicid Flow -- Magnetohydrodynamics -- 5.14 Variational Principles for Discontinuous Fields -- Hybrid Variational Principles -- 6. Variational Boundary-Value Problems, Monotone Operators, and Variational Inequalities -- 6.1 Direct Variational Methods -- 6.2 Linear Elliptic Variational Boundary-Value Problems -- Regularity -- 6.3 The Lax-Milgram-Babuska Theorem -- 6.4 Existence Theory in Linear Incompressible Elasticity -- 6.5 Monotone Operators -- 6.6 Variational Inequalities -- 6.7 Applications in Mechanics -- 7. Variational Methods of Approximation -- 7.1 Introduction -- 7.2 Several Variational Methods of Approximation -- Galerkinโs Method -- The Rayleigh-Ritz Method -- Semidiscrete Galerkin Methods -- Methods of Weighted Residuals -- Least Square Approximations -- Collocation Methods -- Functional Imbeddings -- 7.3 Finite-Element Approximations -- 7.4 Finite-Element Interpolation Theory -- 7.5 Existence and Uniqueness of Galerkin Approximations -- 7.6 Convergence and Accuracy of Finite-Element Galerkin Approximations -- References