Author | Bergh, Jรถran. author |
---|---|
Title | Interpolation Spaces [electronic resource] : An Introduction / by Jรถran Bergh, Jรถrgen Lรถfstrรถm |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1976 |
Connect to | http://dx.doi.org/10.1007/978-3-642-66451-9 |
Descript | X, 207 p. online resource |
1. Some Classical Theorems -- 1.1. The Riesz-Thorin Theorem -- 1.2. Applications of the Riesz-Thorin Theorem -- 1.3. The Marcinkiewicz Theorem -- 1.4. An Application of the Marcinkiewicz Theorem -- 1.5. Two Classical Approximation Results -- 1.6. Exercises -- 1.7. Notes and Comment -- 2. General Properties of Interpolation Spaces -- 2.1. Categories and Functors -- 2.2. Normed Vector Spaces -- 2.3. Couples of Spaces -- 2.4. Definition of Interpolation Spaces -- 2.5. The Aronszajn-Gagliardo Theorem -- 2.6. A Necessary Condition for Interpolation -- 2.7. A Duality Theorem -- 2.8. Exercises -- 2.9. Notes and Comment -- 3. The Real Interpolation Method -- 3.1. The K-Method -- 3.2. The J-Method -- 3.3. The Equivalence Theorem -- 3.4. Simple Properties of ??, q -- 3.5. The Reiteration Theorem -- 3.6. A Formula for the K-Functional -- 3.7. The Duality Theorem -- 3.8. A Compactness Theorem -- 3.9. An Extremal Property of the Real Method -- 3.10. Quasi-Normed Abelian Groups -- 3.11. The Real Interpolation Method for Quasi-Normed Abelian Groups -- 3.12. Some Other Equivalent Real Interpolation Methods -- 3.13. Exercises -- 3.14. Notes and Comment -- 4. The Complex Interpolation Method -- 4.1. Definition of the Complex Method -- 4.2. Simple Properties of ?[?] -- 4.3. The Equivalence Theorem -- 4.4. Multilinear Interpolation -- 4.5. The Duality Theorem -- 4.6. The Reiteration Theorem -- 4.7. On the Connection with the Real Method -- 4.8. Exercises -- 4.9. Notes and Comment -- 5. Interpolation of Lp-Spaces -- 5.1. Interpolation of Lp-Spaces: the Complex Method -- 5.2. Interpolation of Lp-Spaces: the Real Method -- 5.3. Interpolation of Lorentz Spaces -- 5.4. Interpolation of Lp-Spaces with Change of Measure: p0 = p1 -- 5.5. Interpolation of Lp-Spaces with Change of Measure: p0 ? p1 -- 5.6. Interpolation of Lp-Spaces of Vector-Valued Sequences -- 5.7. Exercises -- 5.8. Notes and Comment -- 6. Interpolation of Sobolev and Besov Spaces -- 6.1. Fourier Multipliers -- 6.2. Definition of the Sobolev and Besov Spaces -- 6.3. The Homogeneous Sobolev and Besov Spaces -- 6.4. Interpolation of Sobolev and Besov Spaces -- 6.5. An Embedding Theorem -- 6.6. A Trace Theorem -- 6.7. Interpolation of Semi-Groups of Operators -- 6.8. Exercises -- 6.9. Notes and Comment -- 7. Applications to Approximation Theory -- 7.1. Approximation Spaces -- 7.2. Approximation of Functions -- 7.3. Approximation of Operators -- 7.4. Approximation by Difference Operators -- 7.5. Exercises -- 7.6. Notes and Comment -- References -- List of Symbols