AuthorWalter, Eric. author
TitleIdentifiability of State Space Models [electronic resource] : with applications to transformation systems / by Eric Walter
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1982
Connect tohttp://dx.doi.org/10.1007/978-3-642-61823-9
Descript 216 p. online resource

CONTENT

1. Transformation Systems -- 1.1 Introduction -- 1.2 Formalism -- 1.3 An example: nonlinear chemical kinetics -- 1.4 Specific problems of transformation system modelling -- 1.5 Conclusion -- 2. Structural Properties and Main Approaches to Checking Them -- 2.1 Introduction -- 2.2 Definitions -- 2.3 Practical methods for checking structural observability and structural controllability of linear models -- 2.4 Main approaches to structural identifiability -- 2.5 Conclusion -- 3. Local Identifiability -- 3.1 Introduction -- 3.2 Methods -- 3.3 Linear models -- 3.4 Computer aided design of models -- 3.5 Implementation for linear transformation systems -- 3.6 Conclusion -- 4. Global Identifiability of Linear Models -- 4.1 Introduction -- 4.2 Properties of the transition matrix -- 4.3 Parametrization of the transition matrix -- 4.4 Application to checking s.g. identifiability -- 4.5 Conclusion -- 5. Exhaustive Modelling for Linear Models -- 5.1 Introduction -- 5.2 Class of the studied models -- 5.3 The matrices B and C are known -- 5.4 The matrices B and C are partially unknown -- 5.5 Connections with Kalmanโs canonical form -- 5.6 Applications of exhaustive modelling -- 5.7 Conclusion -- 6. Examples -- 6.1 Introduction -- 6.2 Chemotherapeutic model -- 6.3 Hepatobiliary kinetics of B.S.P. -- 6.4 Metabolism of iodine -- 6.5 Systemic distribution of Vincamine -- 6.6 Conclusion -- 7. Global Identifiability of Nonlinear Models -- 7.1 Introduction -- 7.2 Series expansion approach -- 7.3 Linearization approach -- 7.4 Conclusion -- Conclusion -- References


SUBJECT

  1. Mathematics
  2. Mathematical models
  3. Biomathematics
  4. Statistics
  5. Mathematics
  6. Mathematical and Computational Biology
  7. Mathematical Modeling and Industrial Mathematics
  8. Statistics for Life Sciences
  9. Medicine
  10. Health Sciences