Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorGoss, David. author
TitleBasic Structures of Function Field Arithmetic [electronic resource] / by David Goss
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1998
Connect tohttp://dx.doi.org/10.1007/978-3-642-61480-4
Descript XIII, 424 p. online resource

SUMMARY

From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062


CONTENT

1. Additive Polynomials -- 1.1. Basic Properties -- 1.2. Classification of Additive Polynomials -- 1.3. The Moore Determinant -- 1.4. The Relationship Between k[x] and k{?} -- 1.5. The p-resultant -- 1.6. The Left and Right Division Algorithms -- 1.7. The ?-adjoint of an Additive Polynomial -- 1.8. Dividing A1 by Finite Additive Groups -- 1.9. Analogs in Differential Equations/Algebra -- 1.10. Divisibility Theory -- 1.11. The Semi-invariants of Additive Polynomials -- 2. Review of Non-Archimedean Analysis -- 3. The Carlitz Module -- 3.1. Background -- 3.2. The Carlitz Exponential -- 3.3. The Carlitz Module -- 3.4. The Carlitz Logarithm -- 3.5. The Polynomials Ed(x) -- 3.6. The Carlitz Module over Arbitrary A-fields -- 3.7. The Adjoint of the Carlitz Module -- 4. Drinfeld Modules -- 4.1. Introduction -- 4.2. Lattices and Their Exponential Functions -- 4.3. The Drinfeld Module Associated to a Lattice -- 4.4. The General Definition of a Drinfeld Module -- 4.5. The Height and Rank of a Drinfeld Module -- 4.6. Lattices and Drinfeld Modules over C? -- 4.7. Morphisms of Drinfeld Modules -- 4.8. Primality in F{?} and A -- 4.9. The Action of Ideals on Drinfeld Modules -- 4.10. The Reduction Theory of Drinfeld Modules -- 4.11. Review of Central Simple Algebra -- 4.12. Drinfeld Modules over Finite Fields -- 4.13. Rigidity of Drinfeld Modules -- 4.14. The Adjoint of a General Drinfeld Module -- 5. T-Modules -- 5.1. Vector Bundles -- 5.2. Sheaves and Differential Equations -- 5.3. ?-sheaves -- 5.4. Basic Concepts of T-modules -- 5.5. Pure T-modules -- 5.6. Torsion Points -- 5.7. Tensor Products -- 5.8. The Tensor Powers of the Carlitz Module -- 5.9. Uniformization -- 5.10. The Tensor Powers of the Carlitz Module redux -- 5.11. Scattering Matrices -- 6. Shtukas -- 6.1. Review of Some Algebraic Geometry -- 6.2. The Shtuka Correspondence -- 7. Sign Normalized Rank 1 Drinfeld Modules -- 7.1. Class-fields as Moduli -- 7.2. Sign Normalization -- 7.3. Fields of Definition of Drinfeld Modules -- 7.4. The Normalizing Field -- 7.5. Division Fields -- 7.6. Principal Ideal Theorems -- 7.7. A Rank One Version of Serreโ{128}{153}s Theorem -- 7.8. Classical Partial Zeta Functions -- 7.9. Unit Calculations -- 7.10. Period Computations -- 7.11. The Connection with Shtukas and Examples -- 8. L-series -- 8.1. The โ{128}{156}Complex Planeโ{128}{157} S? -- 8.2. Exponentiation of Ideals -- 8.3. ?-adic Exponentiation of Ideals -- 8.4. Continuous Functions on ? p -- 8.5. Entire Functions on S? -- 8.6. L-series of Characteristic p Arithmetic -- 8.7. Formal Dirichlet Series -- 8.8. Estimates -- 8.9. L-series of Finite Characters -- 8.10. The Question of Local Factors -- 8.11. The Generalized Teichmรผller Character -- 8.12. Special-values at Negative Integers -- 8.13. Trivial Zeroes -- 8.14. Applications to Class Groups -- 8.15. โ{128}{156}Geometricโ{128}{157} Versus โ{128}{156}Arithmeticโ{128}{157} Notions -- 8.16. The Arithmetic Criterion for Cyclicity -- 8.17. The โ{128}{156}Geometric Artin Conjectureโ{128}{157} -- 8.18. Special-values at Positive Integers -- 8.19. The Functional Equation of the Special-values -- 8.20. Applications to Class Groups -- 8.21. The Geometric Criterion for Cyclicity -- 8.22. Magic Numbers -- 8.23. Finiteness in Local and Global Fields -- 8.24. Towards a Theory of the Zeroes -- 8.25. Kapranovโ{128}{153}s Higher Dimensional Theory -- 9. ?-functions -- 9.1. Basic Properties of the Carlitz Factorial -- 9.2. Bernoulli-Carlitz Numbers -- 9.3. The ?-ideal -- 9.4. The Arithmetic ?-function -- 9.5. Functional Equations -- 9.6. Finite Interpolations -- 9.7. Another ?-adic ?-function -- 9.8. Gauss Sums -- 9.9. The Geometric ?-function -- 10. Additional Topics -- 10.1. The Geometric Fermat Equation -- 10.2. Geometric Deligne Reciprocity and Solitons -- 10.3. The Tate Conjecture for Drinfeld Modules -- 10.4. Meromorphic Continuations of L-functions -- 10.5. The Structure of the A-module of Rational Points -- 10.6. Log-algebraicity and Special Points -- References


Mathematics Algebraic geometry Number theory Mathematics Number Theory Algebraic Geometry



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram