Author | Goss, David. author |
---|---|
Title | Basic Structures of Function Field Arithmetic [electronic resource] / by David Goss |
Imprint | Berlin, Heidelberg : Springer Berlin Heidelberg, 1998 |
Connect to | http://dx.doi.org/10.1007/978-3-642-61480-4 |
Descript | XIII, 424 p. online resource |
1. Additive Polynomials -- 1.1. Basic Properties -- 1.2. Classification of Additive Polynomials -- 1.3. The Moore Determinant -- 1.4. The Relationship Between k[x] and k{?} -- 1.5. The p-resultant -- 1.6. The Left and Right Division Algorithms -- 1.7. The ?-adjoint of an Additive Polynomial -- 1.8. Dividing A1 by Finite Additive Groups -- 1.9. Analogs in Differential Equations/Algebra -- 1.10. Divisibility Theory -- 1.11. The Semi-invariants of Additive Polynomials -- 2. Review of Non-Archimedean Analysis -- 3. The Carlitz Module -- 3.1. Background -- 3.2. The Carlitz Exponential -- 3.3. The Carlitz Module -- 3.4. The Carlitz Logarithm -- 3.5. The Polynomials Ed(x) -- 3.6. The Carlitz Module over Arbitrary A-fields -- 3.7. The Adjoint of the Carlitz Module -- 4. Drinfeld Modules -- 4.1. Introduction -- 4.2. Lattices and Their Exponential Functions -- 4.3. The Drinfeld Module Associated to a Lattice -- 4.4. The General Definition of a Drinfeld Module -- 4.5. The Height and Rank of a Drinfeld Module -- 4.6. Lattices and Drinfeld Modules over C? -- 4.7. Morphisms of Drinfeld Modules -- 4.8. Primality in F{?} and A -- 4.9. The Action of Ideals on Drinfeld Modules -- 4.10. The Reduction Theory of Drinfeld Modules -- 4.11. Review of Central Simple Algebra -- 4.12. Drinfeld Modules over Finite Fields -- 4.13. Rigidity of Drinfeld Modules -- 4.14. The Adjoint of a General Drinfeld Module -- 5. T-Modules -- 5.1. Vector Bundles -- 5.2. Sheaves and Differential Equations -- 5.3. ?-sheaves -- 5.4. Basic Concepts of T-modules -- 5.5. Pure T-modules -- 5.6. Torsion Points -- 5.7. Tensor Products -- 5.8. The Tensor Powers of the Carlitz Module -- 5.9. Uniformization -- 5.10. The Tensor Powers of the Carlitz Module redux -- 5.11. Scattering Matrices -- 6. Shtukas -- 6.1. Review of Some Algebraic Geometry -- 6.2. The Shtuka Correspondence -- 7. Sign Normalized Rank 1 Drinfeld Modules -- 7.1. Class-fields as Moduli -- 7.2. Sign Normalization -- 7.3. Fields of Definition of Drinfeld Modules -- 7.4. The Normalizing Field -- 7.5. Division Fields -- 7.6. Principal Ideal Theorems -- 7.7. A Rank One Version of Serreโs Theorem -- 7.8. Classical Partial Zeta Functions -- 7.9. Unit Calculations -- 7.10. Period Computations -- 7.11. The Connection with Shtukas and Examples -- 8. L-series -- 8.1. The โComplex Planeโ S? -- 8.2. Exponentiation of Ideals -- 8.3. ?-adic Exponentiation of Ideals -- 8.4. Continuous Functions on ? p -- 8.5. Entire Functions on S? -- 8.6. L-series of Characteristic p Arithmetic -- 8.7. Formal Dirichlet Series -- 8.8. Estimates -- 8.9. L-series of Finite Characters -- 8.10. The Question of Local Factors -- 8.11. The Generalized Teichmรผller Character -- 8.12. Special-values at Negative Integers -- 8.13. Trivial Zeroes -- 8.14. Applications to Class Groups -- 8.15. โGeometricโ Versus โArithmeticโ Notions -- 8.16. The Arithmetic Criterion for Cyclicity -- 8.17. The โGeometric Artin Conjectureโ -- 8.18. Special-values at Positive Integers -- 8.19. The Functional Equation of the Special-values -- 8.20. Applications to Class Groups -- 8.21. The Geometric Criterion for Cyclicity -- 8.22. Magic Numbers -- 8.23. Finiteness in Local and Global Fields -- 8.24. Towards a Theory of the Zeroes -- 8.25. Kapranovโs Higher Dimensional Theory -- 9. ?-functions -- 9.1. Basic Properties of the Carlitz Factorial -- 9.2. Bernoulli-Carlitz Numbers -- 9.3. The ?-ideal -- 9.4. The Arithmetic ?-function -- 9.5. Functional Equations -- 9.6. Finite Interpolations -- 9.7. Another ?-adic ?-function -- 9.8. Gauss Sums -- 9.9. The Geometric ?-function -- 10. Additional Topics -- 10.1. The Geometric Fermat Equation -- 10.2. Geometric Deligne Reciprocity and Solitons -- 10.3. The Tate Conjecture for Drinfeld Modules -- 10.4. Meromorphic Continuations of L-functions -- 10.5. The Structure of the A-module of Rational Points -- 10.6. Log-algebraicity and Special Points -- References