Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorDestuynder, Philippe. author
TitleMathematical Analysis of Thin Plate Models [electronic resource] / by Philippe Destuynder, Michel Salaun
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1996
Connect tohttp://dx.doi.org/10.1007/978-3-642-51761-7
Descript X, 236 p. 39 illus. online resource

SUMMARY

Ce livre est destinรฉ aux enseignants, chercheurs et รฉtudiants dรฉsireux de se familiariser avec les diffรฉrents modรจles de plaques minces et d'en maรฎtriser les problรจmes mathรฉmatiques et d'approximation sous-jacents. Il contient essentiellement des rรฉsultats nouveaux et des applications originales ร  l'รฉtude du dรฉlaminage des structures multicouche. La dรฉmarche est guidรฉe par un souci de mettre en avant les points dรฉlicats dans la thรฉorie des plaques minces


CONTENT

I โ{128}{148} Plate models for thin structures -- I.0 โ{128}{148} A short description of the chapter -- I.1 โ{128}{148} The three dimensionnal elastic-model -- I.2 โ{128}{148} The Kirchhoff-Love assumption -- I.3 โ{128}{148} The Kirchhof f-Love plate model -- I.4 โ{128}{148} The Naghdi model revisited using mixed variational formulation -- I.5 โ{128}{148} About the rest of the book -- References of Chapter I -- II โ{128}{148} Variational formulations for bending plates -- II.0 โ{128}{148} A brief summary of the chapter -- II. 1 โ{128}{148} Why a mixed formulation for plates -- II.2 โ{128}{148} The primal variational formulation for Kirchhoff-Love model -- II.3 โ{128}{148} The Reissner-Mindlin-Naghdi model for plates -- II.4 โ{128}{148} Natural duality techniques for the bending plate model -- II.5 โ{128}{148} A comparison between the mixed method and the one of section II.2.4 -- References of Chapter II -- III โ{128}{148} Finite element approximations for several plate models -- III.0 โ{128}{148} A summary of the chapter -- III. 1 โ{128}{148} Basic results in finite element approximation -- III.2 โ{128}{148} C1 elements -- III.3 โ{128}{148} Primal finite element methods for bending plates -- III.4 โ{128}{148} The penalty-duality finite element method for the bending plate model -- III.5 โ{128}{148} Numerical approximation of the mixed formulation for a bending plate -- References of Chapter III -- IV โ{128}{148} Numerical tests for the mixed finite element schemes -- IV.0 โ{128}{148} A brief description of the chapter -- IV. 1 โ{128}{148} Precision tests for the mixed formulation -- IV.2 Vectorial and parallel algorithms for mixed elements -- IV.3 โ{128}{148} Concluding remarks -- References of Chapter IV -- V โ{128}{148} A Numerical model for delamination of composite plates -- V.O โ{128}{148} A brief description of the chapter -- V. 1 โ{128}{148} What is delamination of thin multilayered plates -- V.2 โ{128}{148} The three-dimensional multilayered composite plate model with delamination -- V.3 โ{128}{148} A plate model for large delamination -- V.4 โ{128}{148} The three-dimensional energy release rate -- V.5 โ{128}{148} The mechanical example and the numerical method -- V.6 โ{128}{148} Concluding remarks -- References of Chapter V


Mathematics Numerical analysis Computational intelligence Mechanics Mechanics Applied Mathematics Numerical Analysis Theoretical and Applied Mechanics Computational Intelligence



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram