Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorWarner, Garth. author
TitleHarmonic Analysis on Semi-Simple Lie Groups II [electronic resource] / by Garth Warner
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg, 1972
Connect tohttp://dx.doi.org/10.1007/978-3-642-51640-5
Descript VIII, 494 p. online resource

CONTENT

6 Spherical Functions โ{128}{148} The General Theory -- 6.1 Fundamentals -- 6.2 Examples -- 7 Topology on the Dual Plancherel Measure Introduction -- 7.1 Topology on the Dual -- 7.2 Plancherel Measure -- 8 Analysis on a Semi-Simple Lie Group -- 8.1 Preliminaries -- 8.2 Differential Operators on Reductive Lie Groups and Algebras -- 8.3 Central Eigendistributions on Reductive Lie Algebras and Groups -- 8.4 The Invariant Integral on a Reductive Lie Algebra -- 8.5 The Invariant Integral on a Reductive Lie Group -- 9 Spherical Functions on a Semi-Simple Lie Group -- 9.1 Asymptotic Behavior of ?-Spherical Functions on a Semi-Simple Lie Group -- 9.2 Zonal Spherical Functions on a Semi-Simple Lie Group -- 9.3 Spherical Functions and Differential Equations -- 10 The Discrete Series for a Semi-Simple Lie Group โ{128}{148} Existence and Exhaustion -- 10.1 The Role of the Distributions ?? in the Harmonic Analysis on G -- 10.2 Theory of the Discrete Series -- Epilogue -- Append -- 3 Some Results on Differential Equations -- 3.1 The Main Theorems -- 3.2 Lemmas from Analysis -- 3.3 Analytic Continuation of Solutions -- 3.4 Decent Convergence -- 3.5 Normal Sequences of is-Polynomials -- General Notational Conventions -- List of Notations -- Guide to the Literature -- Subject Index to Volumes I and II


Mathematics Harmonic analysis Mathematics Abstract Harmonic Analysis



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram