Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

TitleAdvanced Topics in Computational Partial Differential Equations [electronic resource] : Numerical Methods and Diffpack Programming / edited by Hans Petter Langtangen, Aslak Tveito
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003
Connect tohttp://dx.doi.org/10.1007/978-3-642-18237-2
Descript XIX, 663 p. 13 illus. online resource

SUMMARY

The book is suitable for readers with a background in basic finite element and finite difference methods for partial differential equations who wants gentle introductions to advanced topics like parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to *compute* solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment, so to take advantage of these examples some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through discretization methods, algorithms, software design, verification, and computational examples


CONTENT

1 Parallel Computing -- 1.1 Introduction to Parallel Computing -- 1.2 A Different Performance Model -- 1.3 The First MPI Encounter -- 1.4 Basic Parallel Programming with Diffpack -- 1.5 Parallelizing Explicit FD Schemes -- 1.6 Parallelizing FE Computations on Unstructured Grids -- References -- Overlapping Domain Decomposition Methods -- 2.1 Introduction -- 2.2 The Mathematical Formulations -- 2.3 A 1D Example -- 2.4 Some Important Issues -- 2.5 Components of Overlapping DD Methods -- 2.6 A Generic Implementation Framework -- 2.7 Parallel Overlapping DD Methods -- 2.8 Two Application Examples -- References -- 3 Software Tools for Multigrid Methods -- 3.1 Introduction -- 3.2 Sketch of How Multilevel Methods are Implemented in Diffpack -- 3.3 Implementing Multigrid Methods -- 3.4 Setting up an Input File -- 3.5 Playing Around with Multigrid -- 3.6 Equipping the Poisson2 Solver with Multigrid -- 3.7 Systems of Equations, Linear Elasticity -- 3.8 Nonlinear Problems -- References -- 4 Mixed Finite Elements -- 4.1 Introduction -- 4.2 Model Problems -- 4.3 Mixed Formulation -- 4.4 Some Basic Concepts of a Finite Element -- 4.5 Some Code Examples -- 4.6 Programming with Mixed Finite Elements in a Simulator -- References -- 5 Systems of PDEs and Block Preconditioning -- 5.1 Introduction -- 5.2 Block Preconditioners in General -- 5.3 The Bidomain Equations -- 5.4 Two Saddle Point Problems -- References -- 6 Fully Implicit Methods for Systems of PDEs -- 6.1 Introduction -- 6.2 Implementation of Solvers for PDE Systems in Diffpack -- 6.3 Problem with the Gauss-Seidel Method, by Example -- 6.4 Fully Implicit Implementation -- 6.5 Applications -- 6.6 Conclusion -- References -- 7 Stochastic Partial Differential Equations -- 7.1 Introduction -- 7.2 Some Simple Examples -- 7.3 Solution Methods -- 7.4 Quick Overview of Diffpack Tools -- 7.5 Tools for Random Variables -- 7.6 Diffpack Tools for Random Fields -- 7.7 Summary -- 7.A Transformation of Random Variables -- 7.B Implementing a New Distribution -- References -- 8 Using Diffpack from Python Scripts -- 8.1 Introduction -- 8.2 Developing Python Interfaces to C/C++ Functions -- 8.3 Compiling and Linking Wrapper Code with Diffpack -- 8.4 Converting Data between Diffpack and Python -- 8.5 Building an Interface to a More Advanced Simulator -- 8.6 Installing Python, SWIG etc -- 8.7 Concluding Remarks -- References -- 9 Performance Modeling of PDE Solvers -- 9.1 Introduction -- 9.2 Model Problems -- 9.3 Numerical Methods -- 9.4 Total CPU Time Consumption -- 9.5 Solution of Linear Systems -- 9.6 Construction of Linear Systems -- 9.7 Concluding Remarks -- References -- 10 Electrical Activity in the Human Heart -- 10.1 The Basic Physiology -- 10.2 Outline of a Mathematical Model -- 10.3 The Bidomain Model -- 10.4 A Complete Mathematical Model -- 10.5 Physiology of the Heart Muscle Tissue -- 10.6 The Numerical Method -- 10.7 Implementation -- 10.8 Optimization of the Simulator -- 10.9 Simulation Results -- 10.10 Concluding Remarks -- References -- 11 Mathematical Models of Financial Derivatives -- 11.1 Introduction -- 11.2 Basic Assumptions -- 11.3 Forwards and Futures -- 11.4 The Black-Scholes Analysis -- 11.5 European Call and Put Options -- 11.6 American Options -- 11.7 Exotic Options -- 11.8 Hedging -- 11.9 Remarks -- References -- 12 Numerical Methods for Financial Derivatives -- 12.1 Introduction -- 12.2 Model Summary -- 12.3 Monte-Carlo Methods -- 12.4 Lattice Methods -- 12.5 Finite Difference Methods -- 12.6 Finite Element Methods -- References -- 13 Finite Element Modeling of Elastic Structures -- 13.1 Introduction -- 13.2 An Introductory Example; Bar Elements -- 13.3 Another Example; Beam Elements -- 13.4 General Three-Dimensional Elasticity -- 13.5 Degrees of Freedom and Basis Functions -- 13.6 Material Types and Elasticity Matrices -- 13.7 Element Matrices in Local Coordinates -- 13.8 Element Load Vectors in Local Coordinates -- 13.9 Element Matrices and Vectors in Global Coordinates -- 13.10 Element Forces, Stresses, and Strains -- 13.11 Implementation of Structural Elements -- 13.12 Some Example Programs -- 13.13 Test Problems -- 13.14 Summary -- References -- 14 Simulation of Aluminum Extrusion -- 14.1 Introduction -- 14.2 Mathematical Formulation -- 14.3 Finite Element Implementation -- 14.4 Object-Oriented Implementation -- 14.5 Numerical Experiments -- 14.6 Concluding Remarks -- References -- 15 Simulation of Sedimentary Basins -- 15.1 Introduction -- 15.2 The Geomechanical and Mathematical Problem -- 15.3 Numerical Methods -- 15.4 Implementing a Solver for a System of PDEs -- 15.5 Verification -- 15.6 A Magmatic Sill Intrusion Case Study -- 15.7 Concluding Remarks -- References


Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Computer mathematics Mathematics Analysis Computational Science and Engineering Partial Differential Equations



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram