AuthorDodson, Christopher Terence John. author
TitleTensor Geometry [electronic resource] : The Geometric Viewpoint and its Uses / by Christopher Terence John Dodson, Timothy Poston
ImprintBerlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1991
Edition Second Edition
Connect tohttp://dx.doi.org/10.1007/978-3-642-10514-2
Descript XIV, 434 p. online resource

SUMMARY

We have been very encouraged by the reactions of students and teachers using our book over the past ten years and so this is a complete retype in TEX, with corrections of known errors and the addition of a supplementary bibliography. Thanks are due to the Springer staff in Heidelberg for their enthusiastic supยญ port and to the typist, Armin Kollner for the excellence of the final result. Once again, it has been achieved with the authors in yet two other countries. November 1990 Kit Dodson Toronto, Canada Tim Poston Pohang, Korea Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI O. Fundamental Not(at)ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I. Real Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Subspace geometry, components 2. Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Linearity, singularity, matrices 3. Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Projections, eigenvalues, determinant, trace II. Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1. Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Tangent vectors, parallelism, coordinates 2. Combinations of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Midpoints, convexity 3. Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Linear parts, translations, components III. Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1. Contours, Co- and Contravariance, Dual Basis . . . . . . . . . . . . . . 57 IV. Metric Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Basic geometry and examples, Lorentz geometry 2. Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Isometries, orthogonal projections and complements, adjoints 3. Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Orthonormal bases Contents VIII 4. Diagonalising Symmetric Operators 92 Principal directions, isotropy V. Tensors and Multilinear Forms 98 1. Multilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Tensor Products, Degree, Contraction, Raising Indices VE Topological Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 1. Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Metrics, topologies, homeomorphisms 2. Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Convergence and continuity 3. The Usual Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


CONTENT

0. Fundamental Not(at)ions -- I. Real Vector Spaces -- II. Affine Spaces -- III. Dual Spaces -- IV. Metric Vector Spaces -- V. Tensors and Multilinear Forms -- VI Topological Vector Spaces -- VII. Differentiation and Manifolds -- VIII. Connections and Covariant Differentiation -- IX. Geodesics -- X. Curvature -- XI. Special Relativity -- XII. General Relativity -- Index of Notations


SUBJECT

  1. Mathematics
  2. Matrix theory
  3. Algebra
  4. Differential geometry
  5. Physics
  6. Mathematics
  7. Differential Geometry
  8. Linear and Multilinear Algebras
  9. Matrix Theory
  10. Theoretical
  11. Mathematical and Computational Physics