Author | Hector, Gilbert. author |
---|---|
Title | Introduction to the Geometry of Foliations, Part B [electronic resource] : Foliations of Codimension One / by Gilbert Hector, Ulrich Hirsch |
Imprint | Wiesbaden : Vieweg+Teubner Verlag, 1987 |
Edition | Second Edition |
Connect to | http://dx.doi.org/10.1007/978-3-322-90161-3 |
Descript | X, 298p. online resource |
IV โ{128}{148} Basic Constructions and Examples -- 1. General setting in co dimension one -- 2. Topological dynamics -- 3. foliated bundles ; example -- 4. Gluing foliations together -- 5. Turbulization -- 6. Co dimension-one foliations on spkeres -- V โ{128}{148} Structure of Codimension-one Foliations -- 1. Trans verse orientability -- 2. Holonomy of compact leaver -- 3. Saturated open sets of compact manifolds -- 4. Centre of a compact foliated manifold; global stability -- Charter VI โ{128}{148} Exceptional Minimal Sets of Compact Foliated Manifolds; a Theorem of Sacksteder -- 1. Resilient leaves -- 2. The. theorem of Denjoy-Sacksteder -- 3. Sackstederโ{128}{153}s theorem -- 4. The theorem of Schwartz -- Charter VII โ{128}{148} One Sided Holonomy; Vanishing Cycles and Closed Transversals -- 1. Preliminaries on one-sided holonomy and vanishing cycles -- 2. Transverse follatlons of D2 ร{151} IR -- 3. Existence of one-sided holonomy and vanishing cycles -- VIII โ{128}{148} Foliations Without Holonomy -- 1. Closed 1-forms without singularities -- 2. Foliations without holonomy versus equivariant fibrations -- 3. Holonomy representation and cohomology direction -- IX โ{128}{148} Growth -- 1. Growth of groups, homogeneous spaces and riemannian manifolds -- 2. Growth of leaves in foliations on compact manifolds -- X โ{128}{148} Holonomy Invariant Measures -- 1. Invariant measures for subgroups of Horneo (IR) or Homeo (S1 ) -- 2. Foliations witk holonomy invariant measure -- Literature. -- Glossary of notations