Author | Hummel, Christoph. author |
---|---|
Title | Gromov's Compactness Theorem for Pseudo-holomorphic Curves [electronic resource] / by Christoph Hummel |
Imprint | Basel : Birkhรคuser Basel : Imprint: Birkhรคuser, 1997 |
Connect to | http://dx.doi.org/10.1007/978-3-0348-8952-0 |
Descript | VIII, 135 p. online resource |
I Preliminaries -- 1. Riemannian manifolds -- 2. Almost complex and symplectic manifolds -- 3. J-holomorphic maps -- 4. Riemann surfaces and hyperbolic geometry -- 5. Annuli -- II Estimates for area and first derivatives -- 1. Gromov's Schwarz- and monotonicity lemma -- 2. Area of J-holomorphic maps -- 3. Isoperimetric inequalities for J-holomorphic maps -- 4. Proof of the Gromov-Schwarz lemma -- III Higher order derivatives -- 1. 1-jets of J-holomorphic maps -- 2. Removal of singularities -- 3. Converging sequences of J-holomorphic maps -- 4. Variable almost complex structures -- IV Hyperbolic surfaces -- 1. Hexagons -- 2. Building hyperbolic surfaces from pairs of pants -- 3. Pairs of pants decomposition -- 4. Thick-thin decomposition -- 5. Compactness properties of hyperbolic structures -- V The compactness theorem -- 1. Cusp curves -- 2. Proof of the compactness theorem -- 3. Bubbles -- VI The squeezing theorem -- 1. Discussion of the statement -- 2. Proof modulo existence result for pseudo-holomorphic curves -- 3. The analytical setup: A rough outline -- 4. The required existence result -- Appendix A The classical isoperimetric inequality -- References on pseudo-holomorphic curves