Title | Nonselfadjoint Operators and Related Topics [electronic resource] : Workshop on Operator Theory and Its Applications, Beersheva, February 24-28, 1992 / edited by A. Feintuch, I. Gohberg |
---|---|
Imprint | Basel : Birkhรคuser Basel : Imprint: Birkhรคuser, 1994 |
Connect to | http://dx.doi.org/10.1007/978-3-0348-8522-5 |
Descript | X, 422 p. online resource |
Joint spectrum and discriminant varieties of commuting nonselfadjoint operators -- 1. Introduction -- 2. Joint spectra of commuting operators with compact imaginary parts -- 3. Colligations and vessels -- 4. The discriminant varieties -- References -- On the differential structure of matrix-valued rational inner functions -- 1. Introduction and preliminaries -- 2. The differential structure of Inp -- 3. Charts using Schur algorithm -- 4. Conclusion -- References -- Conservative dynamical systems and nonlinear Livsic-Brodskii nodes -- 1. Conservative systems -- 2. Nonlinear Livsic-Brodskii nodes: models for a given dynamics up to energy preserving diffeomorphic change of variable -- 3. Other partionings of the cast of characters into knowns and unknowns -- References -- Orthogonal polynomials over Hilbert modules -- 1. Introduction -- 2. Orthogonalization with invertible squares -- 3. Preliminaries on inertia theorems for unilateral shifts -- 4. The main result -- References -- Relations of linking and duality between symmetric gauge functions -- 1. Introduction -- 2. Linked symmetric gauge functions -- 3. Quotient of symmetric gauge functions -- 4. Q-norms -- References -- Julia operators and coefficient problems -- 1. Introduction -- 2. Julia operators for triangular matrices -- 3. Multiplication transformations on power series -- 4. Extension problem for substitution transformations -- Appendix. Formal algebra -- References -- Shifts, realizations and interpolation, Redux -- 1. Introduction -- 2. Formulas and facts -- 3. R? variance -- 4. Realizations -- 5. Reproducing kernel spaces -- 6. H(S) spaces -- 7. A basic interpolation problem -- 8. Factorization and recursive methods -- 9. Characteristic functions -- References -- Arvesonโs distance formulae and robust stabilization for linear time-varying systems -- 1. Introduction -- 2. Preliminaries -- 3. Stabilization and proper representations -- 4. Robust stabilization: Proper representation uncertainty -- 5. Gap metric robustness -- Entire cyclic cohomology of Banach algebras -- 1. Background -- 2. Definitions -- 3. Results -- References -- The bounded real characteristic function and Nehari extensions -- 1. Introduction -- 2. Bounded real functions -- 3. Hankel operators -- 4. State space realizations -- 5. Suboptimal Nehari extensions -- References -- On isometric isomorphism between the second dual to the โsmallโ Lipschitz space and the โbigโ Lipschitz space -- The Kantorovich-Rubinstein norm -- Completion of the space of measures in the KR norm -- Critical and noncritical metric spaces -- References -- Rules for computer simplification of the formulas in operator model theory and linear systems -- I. Introduction -- II. The reduction and basis algorithms -- III. Operator relations with finite basis for rules -- IV. Operator relations with infinite basis for rules -- V. A new algebra containing the functional calculus of operator theory -- VI. Grรถbner basis property -- VII. Summary of practical rules you might use -- References -- Some global properties of fractional-linear transformations -- Preliminaries -- 1. The case of invertible plus-operators -- 2. The general case of a non-invertible operator U -- References -- Boundary values of Berezin symbols -- 1. Introduction -- 2. Compactness criterion -- 3. Continuous Berezin symbols -- 4. Two questions -- References -- Generalized Hermite polynomials and the bose-like oscillator calculus -- 1. Introduction -- 2. Generalized Hermite polynomials -- 3. The generalized Fourier transform -- 4. Generalized translation -- 5. The Bose-like oscillator -- References -- A general theory of sufficient collections of norms with a prescribed semigroup of contractions -- 1. Formulation of the problem -- 2. Notions -- 3. Formulations of results -- 4. Proofs of results -- References