AuthorRosenblum, Marvin. author
TitleTopics in Hardy Classes and Univalent Functions [electronic resource] / by Marvin Rosenblum, James Rovnyak
ImprintBasel : Birkhรคuser Basel : Imprint: Birkhรคuser, 1994
Connect tohttp://dx.doi.org/10.1007/978-3-0348-8520-1
Descript XII, 250 p. online resource

SUMMARY

These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origiยญ nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from properยญ ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course


CONTENT

1 Harmonic Functions -- 1.1 Introduction -- 1.2 Uniqueness principle -- 1.3 The Poisson kernel -- 1.4 Normalized Lebesgue measure -- 1.5 Dirichlet problem for the unit disk -- 1.6 Properties of harmonic functions -- 1.7 Mean value property -- 1.8 Harnackโs theorem -- 1.9 Weak compactness principle -- 1.10 Nonnegative harmonic functions -- 1.11 Herglotz and Riesz representation theorem -- 1.12 Stieltjes inversion formula -- 1.13 Integral of the Poisson kernel -- 1.14 Examples -- 1.15 Space h1(D) -- 1.16 Characterization of h1(D) -- 1.17 Nontangential convergence -- 1.18 Fatouโs theorem -- 1.19 Boundary functions -- Examples and addenda -- 2 Subharmonic Functions -- 2.1 Introduction -- 2.2 Upper semicontinuous functions -- 2.3 Subharmonic functions -- 2.4 Some properties of subharmonic functions -- 2.5 Maximum principle -- 2.6 Convergence of mean values -- 2.7 Convex functions -- 2.8 Structure of convex functions -- 2.9 Jensenโs inequality -- 2.10 Composition of convex and subharmonic functions -- 2.11 Vector- and operator-valued functions -- 2.12 Subharmonic functions from holomorphic functions -- 3 Part I Harmonic Majorants Part II Nevanlinna and Hardy-Orlicz Classes -- 3.1 Introduction -- 3.2 Least harmonic majorant -- 3.3 Existence of least harmonic majorants -- 3.4 Construction of harmonic majorants -- 3.5 Class shl(D) -- 3.6 Characterization of sh1(D) -- 3.7 Absolutely continuous component of a related measure -- 3.8 Uniformly integrable family -- 3.9 Strongly convex functions -- 3.10 Theorem of de la Vallรฉe Poussin and Nagumo -- 3.11 Singular component of associated measures -- 3.12 Sufficient conditions for absolute continuity -- 3.13 Theorem of Szegรถ-Solomentsev -- 3.14 Remark -- 3.15 Hardy and Nevanlinna classes -- 3.16 Linearity of the classes -- 3.17 Properties of log+x -- 3.18 Majorants for strongly convex functions -- 3.19 Compositions and restrictions -- 3.20 Quotients of bounded functions -- Examples and addenda -- 4 Hardy Spaces on the Disk -- 4.1 Introduction -- 4.2 Inner and outer functions -- 4.3 Rational inner functions -- 4.4 Infinite products -- 4.5 An infinite product -- 4.6 Blaschke products -- 4.7 Inner functions with no zeros -- 4.8 Singular inner functions -- 4.9 Factorization of inner functions -- 4.10 Boundary functions for N(D) -- 4.11 Characterization of N(D) -- 4.12 Condition on zeros -- 4.13 N(D) as an algebra -- 4.14 Characterization of N+(D) -- 4.15 N+(D) as an algebra -- 4.16 Estimates from boundary functions for N+(D) -- 4.17 Outer functions in N+(D) -- 4.18 Characterization of ??(D) -- 4.19 Nevanlinna and Hardy-Orlicz classes on the boundary -- 4.20 Szegรถโs problem -- 4.21 Classes HP(D) and HP(?) -- 4.22 Characterization of HP(D) -- 4.23 Characterization of HP(?) -- 4.24 Connection between HP(D) and HP(?) -- 4.25 Hp(?) as a subspace of LP(?) -- 4.26 Hp(D) and HP(?) as Banach spaces -- 4.27 F and M Riesz theorem -- 4.28 H2(D) and H2(?) -- 4.29 Sufficient conditions for outer functions -- 4.30 Beurlingโs theorem -- 4.31 Theorem of Szegรถ, Kolmogorov, and Kre?n -- 4.32 Closure of trigonometric functions in Lp(?) -- 5 Function Theory on a Half-Plane -- 5.1 Introduction -- 5.2 Poisson representation -- 5.3 Nevanlinna representation -- 5.4 Stieltjes inversion formula -- 5.5 Fatouโs theorem -- 5.6 Boundary functions for N(?) -- 5.7 Limits of nondecreasing functions -- 5.8 Nonnegative harmonic functions -- 5.9 Theorem of Flett and Kuran -- 5.10 Nevanlinna and Hardy-Orlicz classes -- 5.11 Notation and terminology -- 5.12 Szegรถโs problem on the line -- 5.13 Inner and outer functions -- 5.14 Examples and miscellaneous properties -- 5.15 Hardy classes -- 5.16 Characterization of ?P(I?) -- 5.17 Inclusions among classes -- 5.18 Poisson representation for ?P(?) -- 5.19 Cauchy representation for Hp(?) -- 5.20 Characterization of HP(?) -- 5.21 Hp(?) as a subspace of N+(?) -- 5.22 Condition for mean convergence -- 5.23 Hp(?)and ?P(?) as subspaces of N+(?) -- 5.24 HP(?)and ?p(?) as Banach spaces -- 5.25 Local convergence to a boundary function -- 5.26 Remark on the definition of HP(?) -- 5.27 Plancherel theorem -- 5.28 Paley-Wiener representation -- 5.29 Natural isomorphisms -- 5.30 Hilbert transforms -- 5.31 Real and imaginary parts of boundary functions -- 5.32 Cauchy transform on Lp(??, ?) -- 5.33 Mapping f? fโi f on Lp(-?, ?) to HP(R) -- 5.34 M Riesz theorem -- 5.35 Algebraic properties of Hilbert transforms -- Examples and addenda -- 6 Phragmรฉn-Lindelรถf Principle -- 6.1 Introduction -- 6.2 Phragmรฉn-Lindelรถf principle -- 6.3 Functions on a sector -- 6.4 Estimate from behavior on the imaginary axis -- 6.5 Blaschke products on the imaginary axis -- 6.6 Equivalence of the unit disk and a half-disk -- 6.7 Function theory on a half-disk -- 6.8 Estimates on a half-disk -- 6.9 Test to belong to N(?) -- 6.10 Asymptotic behavior of Poisson integrals -- 6.11 Estimate from behavior on semicircles -- 6.12 Blaschke products on semicircles -- 6.13 Factorization of bounded type functions -- 6.14 Nevanlinna factorization and mean type -- 6.15 Formulas for mean type -- 6.16 Exponential type -- 6.17 Kre?nโs theorem -- 6.18 Inequalities for mean type -- Examples and addenda -- 7 Loewner Families -- 7.1 Definitions and overview of the subject -- 7.2 Preliminary results -- 7.3 Riemann mapping theorem -- 7.4 The Dirichlet space and area theorem -- 7.5 Generalization of the Dirichlet space -- 7.6 Bieberbachโs theorem -- 7.7 Size of the image domain -- 7.8 Distortion theorem -- 7.9 Carathรฉodory convergence theorem -- 7.10 Subordination -- 7.11 Technical lemmas -- 7.12 Parametric representation of Loewner families -- 8 Loewnerโs Differential Equation -- 8.1 Loewner families and associated semigroups -- 8.2 Estimates derived from Schwarzโs lemma -- 8.3 Absolute continuity -- 8.4 Herglotz functions -- 8.5 Loewnerโs differential equation -- 8.6 Solution of the nonlinear equation -- 8.7 Solution of Loewnerโs differential equation -- 9 Coefficient Inequalities -- 9.1 Three famous problems -- 9.2 de Brangesโ method -- 9.3 Construction of the weight functions -- 9.4 Askey-Gasper inequality -- Notes


SUBJECT

  1. Mathematics
  2. Mathematical analysis
  3. Analysis (Mathematics)
  4. Functional analysis
  5. Functions of complex variables
  6. Mathematics
  7. Functional Analysis
  8. Analysis
  9. Functions of a Complex Variable