Author | Litvinov, William G. author |
---|---|
Title | Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics [electronic resource] / by William G. Litvinov |
Imprint | Basel : Birkhรคuser Basel : Imprint: Birkhรคuser, 2000 |
Connect to | http://dx.doi.org/10.1007/978-3-0348-8387-0 |
Descript | XXII, 522 p. online resource |
1 Basic Definitions and Auxiliary Statements -- 1.1 Sets, functions, real numbers -- 1.2 Topological, metric, and normed spaces -- 1.3 Continuous functions and compact spaces -- 1.4 Maximum function and its properties -- 1.5 Hilbert space -- 1.6 Functional spaces that are used in the investigation of boundary value and optimal control problems -- 1.7 Inequalities of coerciveness -- 1.8 Theorem on the continuity of solutions of functional equations -- 1.9 Differentiation in Banach spaces and the implicit function theorem -- 1.10 Differentiation of the norm in the space Wpm(?) -- 1.11 Differentiation of eigenvalues -- 1.12 The Lagrange principle in smooth extremum problems -- 1.13 G-convergence and G-closedness of linear operators -- 1.14 Diffeomorphisms and invariance of Sobolev spaces with respect to diffeomorphisms -- 2 Optimal Control by Coefficients in Elliptic Systems -- 2.1 Direct problem -- 2.2 Optimal control problem -- 2.3 The finite-dimensional problem -- 2.4 The finite-dimensional problem (another approach) -- 2.5 Spectral problem -- 2.6 Optimization of the spectrum -- 2.7 Control under restrictions on the spectrum -- 2.8 The basic optimal control problem -- 2.9 The combined problem -- 2.10 Optimal control problem for the case when the state of the system is characterized by a set of functions -- 2.11 The general control problem -- 2.12 Optimization by the shape of domain and by operators -- 2.13 Optimization problems with smooth solutions of state equations -- 3 Control by the Right-hand Sides in Elliptic Problems -- 3.1 On the minimum of nonlinear functionals -- 3.2 Approximate solution of the minimization problem -- 3.3 Control by the right-hand side in elliptic problems provided the goal functional is quadratic -- 3.4 Minimax control problems -- 3.5 Control of systems whose state is described by variational inequalities -- 4 Direct Problems for Plates and Shells -- 4.1 Bending and free oscillations of thin plates -- 4.2 Problem of stability of a thin plate -- 4.3 Model of the three-layered plate ignoring shears in the middle layer -- 4.4 Model of the three-layered plate accounting for shears in the middle layer -- 4.5 Basic relations of the shell theory -- 4.6 Shells of revolution -- 4.7 Shallow shells -- 4.8 Problems of statics of shells -- 4.9 Free oscillations of a shell -- 4.10 Problem of shell stability -- 4.11 Finite shear model of a shell -- 4.12 Laminated shells -- 5 Optimization of Deformable Solids -- 5.1 Settings of optimization problems for plates and shells -- 5.2 Approximate solution of direct and optimization problems for plates and shells -- 5.3 Optimization problems for plates (control by the function of the thickness) -- 5.4 Optimization problems for shells (control by functions of midsurface and thickness) -- 5.5 Control by the shape of a hole and by the function of thickness for a shallow shell -- 5.6 Control by the load for plates and shells -- 5.7 Optimization of structures of composite materials -- 5.8 Optimization of laminate composite covers according to mechanical and radio engineering characteristics -- 5.9 Shape optimization of a two-dimensional elastic body -- 5.10 Optimization of the internal boundary of a two-dimensional elastic body -- 5.11 Optimization problems on manifolds and shape optimization of elastic solids -- 5.12 Optimization of the residual stresses in an elastoplastic body -- 6 Optimization Problems for Steady Flows of Viscous and Nonlinear Viscous Fluids -- 6.1 Problem of steady flow of a nonlinear viscous fluid -- 6.2 Theorem on continuity -- 6.3 Continuity with respect to the shape of the domain -- 6.4 Control of fluid flows by perforated walls and computation of the function of filtration -- 6.5 The flow in a canal with a perforated wall placed inside -- 6.6 Optimization by the functions of surface forces and filtration -- 6.7 Problems of the optimal shape of a canal -- 6.8 A problem of the optimal shape of a hydrofoil -- 6.9 Direct and optimization problems with consideration for the inertia forces