Author | Brown, Ken A. author |
---|---|

Title | Lectures on Algebraic Quantum Groups [electronic resource] / by Ken A. Brown, Ken R. Goodearl |

Imprint | Basel : Birkhรคuser Basel : Imprint: Birkhรคuser, 2002 |

Connect to | http://dx.doi.org/10.1007/978-3-0348-8205-7 |

Descript | IX, 348 p. 2 illus. online resource |

SUMMARY

In September 2000, at the Centre de Recerca Matematica in Barcelona, we preยญ sented a 30-hour Advanced Course on Algebraic Quantum Groups. After the course, we expanded and smoothed out the material presented in the lectures and inteยญ grated it with the background material that we had prepared for the participants; this volume is the result. As our title implies, our aim in the course and in this text is to treat selected algebraic aspects of the subject of quantum groups. Sevยญ eral of the words in the previous sentence call for some elaboration. First, we mean to convey several points by the term 'algebraic' - that we are concerned with algebraic objects, the quantized analogues of 'classical' algebraic objects (in contrast, for example, to quantized versions of continuous function algebras on compact groups); that we are interested in algebraic aspects of the structure of these objects and their representations (in contrast, for example, to applications to other areas of mathematics); and that our tools will be drawn primarily from noncommutative algebra, representation theory, and algebraic geometry. Second, the term 'quantum groups' itself. This label is attached to a large and rapidly diversifying field of mathematics and mathematical physics, originally launched by developments around 1980 in theoretical physics and statistical meยญ chanics. It is a field driven much more by examples than by axioms, and so resists attempts at concise description (but see Chapter 1. 1 and the references therein)

CONTENT

Preface -- I. BACKGROUND AND BEGINNINGS -- I.1. Beginnings and first examples -- I.2. Further quantized coordinate rings -- I.3. The quantized enveloping algebra of sC2(k) -- I.4. The finite dimensional representations of Uq(5r2(k)) -- I.5. Primer on semisimple Lie algebras -- I.6. Structure and representation theory of Uq(g) with q generic -- I.7. Generic quantized coordinate rings of semisimple groups -- I.8. 0q(G) is a noetherian domain -- I.9. Bialgebras and Hopf algebras -- I.10. R-matrices -- I.11. The Diamond Lemma -- I.12. Filtered and graded rings -- I.13. Polynomial identity algebras -- I.14. Skew polynomial rings satisfying a polynomial identity -- I.15. Homological conditions -- I.16. Links and blocks -- II. GENERIC QUANTIZED COORDINATE RINGS -- II.1. The prime spectrum -- II.2. Stratification -- II.3. Proof of the Stratification Theorem -- II.4. Prime ideals in 0q (G) -- II.5. H-primes in iterated skew polynomial algebras -- II.6. More on iterated skew polynomial algebras -- II.7. The primitive spectrum -- II.8. The Dixmier-Moeglin equivalence -- II.9. Catenarity -- II.10. Problems and conjectures -- III. QUANTIZED ALGEBRAS AT ROOTS OF UNITY -- III.1. Finite dimensional modules for affine PI algebras -- 1II.2. The finite dimensional representations of UE(5C2(k)) -- II1.3. The finite dimensional representations of OE(SL2(k)) -- III.4. Basic properties of PI Hopf triples -- III.5. Poisson structures -- 1II.6. Structure of U, (g) -- III.7. Structure and representations of 0,(G) -- III.8. Homological properties and the Azumaya locus -- II1.9. Mรผllerโ{128}{153}s Theorem and blocks -- III.10. Problems and perspectives

Mathematics
Group theory
Topological groups
Lie groups
Mathematics
Topological Groups Lie Groups
Group Theory and Generalizations