Author | Graf, Urs. author |
---|---|
Title | Applied Laplace Transforms and z-Transforms for Scientists and Engineers [electronic resource] : A Computational Approach using a Mathematica Package / by Urs Graf |
Imprint | Basel : Birkhรคuser Basel : Imprint: Birkhรคuser, 2004 |
Connect to | http://dx.doi.org/10.1007/978-3-0348-7846-3 |
Descript | X, 500 p. online resource |
1 Laplace Transformation -- 1.1 The One-Sided Laplace Transform -- 1.2 The Two-Sided Laplace Transform -- 1.3 Ordinary Linear Differential Equations -- 2 z-Transformation -- 2.1 z-Transforms and Inverse z-Transforms -- 2.2 Difference Equations -- 3 Laplace Transforms with the Package -- 3.1 Basics -- 3.2 The Use of Transformation Rules -- 3.3 The Finite Laplace Transform -- 3.4 Special Functions -- 3.5 Inverse Laplace Transformation -- 3.6 Differential Equations -- 4 z-Transformation with the Package -- 4.1 Basics -- 4.2 Use of Transformation Rules -- 4.3 Difference Equations -- 5 Applications To Automatic Control -- 5.1 Controller Configurations -- 5.2 State-Variable Analysis -- 5.3 Second Order Differential Systems -- 5.4 Stability -- 5.5 Frequency Analysis -- 5.6 Sampled-Data Control Systems -- 6 Laplace Transformation: Further Topics -- 6.1 The Complex Inversion Formula -- 6.2 Laplace Transforms and Asymptotics -- 6.3 Differential Equations -- 7 z-Transformation: Further Topics -- 7.1 The Advanced z-Transformation -- 7.2 Applications -- 7.3 Use of the Package -- 8 Examples from Electricity -- 8.1 Transmission Lines -- 8.2 Electrical Networks -- 9 Examples from Control Engineering -- 9.1 Control of an Inverted Pendulum -- 9.2 Controling a Seesaw-Pendulum -- 9.3 Control of a DC Motor -- 9.4 A Magnetic-Ball-Suspension-System -- 9.5 A Sampled-Data State-Variable Control System -- 10 Heat Conduction and Vibration Problems -- 10.1 Flow of Heat -- 10.2 Waves and Vibrations in Elastic Solids -- 11 Further Techniques -- 11.1 Duhamelโs Formulas -- 11.2 Greenโs Functions -- 11.3 Fundamental Solutions -- 11.4 Finite Fourier Transforms -- 12 Numerical Inversion of Laplace Transforms -- 12.1 Inversion by the Use of Laguerre Functions -- 12.2 Inversion by Use of Fourier Analysis -- 12.3 The Use of Gaussian Quadrature Formulas -- 12.4 The Method of Gaver and Stehfest -- 12.5 Example -- Appendix: Package Commands