Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorSerre, Jean-Pierre. author
TitleLocal Fields [electronic resource] / by Jean-Pierre Serre
ImprintNew York, NY : Springer New York : Imprint: Springer, 1979
Connect tohttp://dx.doi.org/10.1007/978-1-4757-5673-9
Descript VIII, 245 p. online resource

SUMMARY

The goal of this book is to present local class field theory from the cohomoยญ logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group cohoยญ mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray


CONTENT

One Local Fields (Basic Facts) -- I Discrete Valuation Rings and Dedekind Domains -- II Completion -- Two Ramification -- III Discriminant and Different -- IV Ramification Groups -- V The Norm -- VI Artin Representation -- Three Group Cohomology -- VII Basic Facts -- VIII Cohomology of Finite Groups -- IX Theorems of Tate and Nakayama -- X Galois Cohomology -- XI Class Formations -- Four Local Class Field Theory -- XII Brauer Group of a Local Field -- XIII Local Class Field Theory -- XIV Local Symbols and Existence Theorem -- XV Ramification -- Supplementary Bibliography for the English Edition


Mathematics Algebra Mathematics Algebra



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram