TitleSemi-Infinite Programming [electronic resource] : Recent Advances / edited by Miguel ร. Goberna, Marco A. Lรณpez
ImprintBoston, MA : Springer US : Imprint: Springer, 2001
Connect tohttp://dx.doi.org/10.1007/978-1-4757-3403-4
Descript XVIII, 386 p. online resource

SUMMARY

Semi-infinite programming (SIP) deals with optimization problems in which either the number of decision variables or the number of constraints is finite. This book presents the state of the art in SIP in a suggestive way, bringing the powerful SIP tools close to the potential users in different scientific and technological fields. The volume is divided into four parts. Part I reviews the first decade of SIP (1962-1972). Part II analyses convex and generalised SIP, conic linear programming, and disjunctive programming. New numerical methods for linear, convex, and continuously differentiable SIP problems are proposed in Part III. Finally, Part IV provides an overview of the applications of SIP to probability, statistics, experimental design, robotics, optimization under uncertainty, production games, and separation problems. Audience: This book is an indispensable reference and source for advanced students and researchers in applied mathematics and engineering


CONTENT

I History -- 1 On The 1962โ1972 Decade of Semi-Infinite Programming: A Subjective View -- II Theory -- 2 About Disjunctive Optimization -- 3 On Regularity and Optimality in Nonlinear Semi-Infinite Programming -- 4 Asymptotic Constraint Qualifications and Error Bounds for Semi-Infinite Systems of Convex Inequalities -- 5 Stability of the Feasible Set Mapping in Convex Semi-Infinite Programming -- 6 On Convex Lower Level Problems In Generalized Semi-Infinite Optimization -- 7 On Duality Theory of Conic Linear Problems -- III Numerical Methods -- 8 Two Logarithmic Barrier Methods for Convex Semi-Infinite Problems -- 9 First-Order Algorithms for Optimization Problems with a Maximum Eigenvalue/ Singular Value Cost and or Constraints -- 10 Analytic Center Based Cutting Plane Method for Linear Semi-Infinite Programming -- IV Modeling and Applications -- 11 On Some Applications Of Lsip to Probability and Statistics -- 12 Separation by Hyperplanes: A Linear Semi-Infinite Programming Approach -- 13 A Semi-Infinte Optimization Approach to Optimal Spline Trajectory Planning of Mechanical Manipulators -- 14 On Stability of Guaranteed Estimation Problems: Error Bounds for Information Domains and Experimental Design -- 15 Optimization under Uncertainty and Linear Semi-Infinite Programming: A Survey -- 16 Semi-Infinite Assignment and Transportation Games -- 17 The Owen Set and the Core of Semi-Infinite Linear Production Situations


SUBJECT

  1. Computer science
  2. Software engineering
  3. Computer science -- Mathematics
  4. Applied mathematics
  5. Engineering mathematics
  6. Mathematical models
  7. Mathematical optimization
  8. Probabilities
  9. Computer Science
  10. Software Engineering/Programming and Operating Systems
  11. Probability Theory and Stochastic Processes
  12. Applications of Mathematics
  13. Optimization
  14. Mathematical Modeling and Industrial Mathematics
  15. Mathematics of Computing