Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

AuthorLang, Serge. author
TitleIntroduction to Complex Hyperbolic Spaces [electronic resource] / by Serge Lang
ImprintNew York, NY : Springer New York : Imprint: Springer, 1987
Connect tohttp://dx.doi.org/10.1007/978-1-4757-1945-1
Descript VIII, 272 p. online resource

SUMMARY

Since the appearance of Kobayashi's book, there have been several reยญ sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I reยญ produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not superยญ sede Kobayashi's. My interest in these matters stems from their relations with diophanยญ tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevanยญ linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other


CONTENT

0 Preliminaries -- I Basic Properties -- II Hyperbolic Imbeddings -- III Brodyโ{128}{153}s Theorem -- IV Negative Curvature on Line Bundles -- V Curvature on Vector Bundles -- VI Nevanlinna Theory -- VII Applications to Holomorphic Curves in Pn -- VIII Normal Families of the Disc in Pn Minus Hyperplanes


Mathematics Mathematical analysis Analysis (Mathematics) Mathematics Analysis



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram