Author | Arnold, V. I. author |
---|---|
Title | Mathematical Methods of Classical Mechanics [electronic resource] / by V. I. Arnold |
Imprint | New York, NY : Springer New York : Imprint: Springer, 1978 |
Connect to | http://dx.doi.org/10.1007/978-1-4757-1693-1 |
Descript | X, 464 p. online resource |
I Newtonian Mechanics -- 1 Experimental facts -- 2 Investigation of the equations of motion -- II Lagrangian Mechanics -- 3 Variational principles -- 4 Lagrangian mechanics on manifolds -- 5 Oscillations -- 6 Rigid Bodies -- III Hamiltonian Mechanics -- 7 Differential forms -- 8 Symplectic manifolds -- 9 Canonical formalism -- 10 Introduction to perturbation theory -- Appendix 1 Riemannian curvature -- Appendix 2 Geodesies of left-invariant metrics on Lie groups and the hydrodynamics of an ideal fluid -- Appendix 3 Symplectic structure on algebraic manifolds -- Appendix 4 Contact structures -- Appendix 5 Dynamical systems with symmetries -- Appendix 6 Normal forms of quadratic hamiltonians -- Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories -- Appendix 8 Perturbation theory of conditionally periodic motions and Kolmogorovโs theorem -- Appendix 9 Poincarรฉโs geometric theorem, its generalizations and applications -- Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters -- Appendix 11 Short wave asymptotics -- Appendix 12 Lagrangian singularities -- Appendix 13 The Korteweg-de Vries equation