Author | Narasimhan, Raghavan. author |
---|---|
Title | Complex Analysis in one Variable [electronic resource] / by Raghavan Narasimhan |
Imprint | Boston, MA : Birkhรคuser Boston : Imprint: Birkhรคuser, 1985 |
Connect to | http://dx.doi.org/10.1007/978-1-4757-1106-6 |
Descript | XVI, 268 p. 3 illus. online resource |
1 Elementary Theory of Holomorphic Functions -- 1 Some basic properties of ?-differentiable and holomorphic functions -- 2 Integration along curves -- 3 Fundamental properties of holomorphic functions -- 4 The theorems of Weierstrass and Montel -- 5 Meromorphic functions -- 6 The Looman-Menchoff theorem -- Notes on Chapter 1 -- References : Chapter 1 -- 2 Covering Spaces and the Monodromy Theorem -- 1 Covering spaces and the lifting of curves -- 2 The sheaf of germs of holomorphic functions -- 3 Covering spaces and integration along curves -- 4 The monodromy theorem and the homotopy form of Cauchyโ{128}{153}s theorem -- 5 Applications of the monodromy theorem -- Notes on Chapter 2 -- References : Chapter 2 -- 3 The Winding Number and the Residue Theorem -- 1 The winding number -- 2 The residue theorem -- 3 Applications of the residue theorem -- Notes on Chapter 3 -- References : Chapter 3 -- 4 Picardโ{128}{153}s Theorem -- Notes on Chapter 4 -- References : Chapter 4 -- 5 The Inhomogeneous Cauchy-Riemann Equation and Rungeโ{128}{153}s Theorem -- 1 Partitions of unity -- 2 The equation % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq % GHciITcaWG1baabaGaeyOaIyRabmOEayaaraaaaiabg2da9iabew9a % Mbaa!3DAD!$$ \[\frac{{\partial u}} {{\partial \bar z}} = \phi \]$$ -- 3 Rungeโ{128}{153}s theorem -- 4 The homology form of Cauchyโ{128}{153}s theorem -- Notes on Chapter 5 -- References : Chapter 5 -- 6 Applications of Rungeโ{128}{153}s Theorem -- 1 The Mittag-Leffler theorem -- 2 The cohomology form of Cauchyโ{128}{153}s theorem -- 3 The theorem of Weierstrass -- 4 Ideals in ? (?) -- Notes on Chapter 6 -- References : Chapter 6 -- 7 The Riemann Mapping Theorem and Simple Connectedness in the Plane -- 1 Analytic automorphisms of the disc and of the annulus -- 2 The Riemann mapping theorem -- 3 Simply connected plane domains -- Notes on Chapter 7 -- References : Chapter 7 -- 8 Functions of Several Complex Variables -- Notes on Chapter 8 -- References : Chapter 8 -- 9 Compact Riemann Surfaces -- 1 Definitions and basic theorems -- 2 Meromorphic functions -- 3 The cohomology group H1(