AuthorDriver, R. D. author
TitleOrdinary and Delay Differential Equations [electronic resource] / by R. D. Driver
ImprintNew York, NY : Springer New York, 1977
Connect tohttp://dx.doi.org/10.1007/978-1-4684-9467-9
Descript IX, 505 p. 2 illus. online resource

CONTENT

I Elementary Methods for Ordinary Differential Equations of First Order -- 1. Examples and classification -- 2. Linear equations -- 3. Separable equations -- II Uniqueness and Lipschitz Conditions for Ordinary Differential Equations -- 4. First order scalar equations -- 5. Systems of equations -- 6. Higher order equations -- 7. Complex solutions -- 8. A valuable lemma -- 9. A boundary value problem -- III The Linear Equation of Order n -- 10. Constant coefficients (the homogeneous case) -- 11. Linear independence and Wronskians -- 12. Constant coefficients (general solution for simple h) -- 13. Variation of parameters -- IV Linear Ordinary Differential Systems -- 14. Some general properties -- 15. Constant coefficients -- 16. Oscillations and damping in applications -- 17. Variation of parameters -- 18. Matrix norm -- 19. Matrix exponential -- 20. Existence of solutions (successive approximations) -- V Introduction to Delay Differential Equations -- 21. Examples and the method of steps -- 22. Some distinguishing features and some โwrongโ questions -- 23. Lipschitz condition and uniqueness -- VI Existence Theory -- 24. Ordinary differential systems -- 25. Systems with bounded delays: notation and uniqueness -- 26. Systems with bounded delays: existence -- VII Linear Delay Differential Systems -- 27. Superposition -- 28. Constant coefficients -- 29. Variation of parameters -- VIII Stability -- 30. Definitions and examples -- 31. Lyapunov method for uniform stability -- 32. Asymptotic stability -- 33. Linear and quasi-linear ordinary differential systems -- 34. Linear and quasi-linear delay differential systems -- IX Autonomous Ordinary Differential Systems -- 35. Trajectories and critical points -- 36. Linear systems of second order -- 37. Critical points of quasi-linear systems of second order -- 38. Global behavior for some nonlinear examples -- Appendices -- 1. Notation for sets, functions and derivatives -- Appendices -- 2. Some theorems from calculus -- References -- Answers and Hints


SUBJECT

  1. Mathematics
  2. Mathematical analysis
  3. Analysis (Mathematics)
  4. Mathematics
  5. Analysis