AuthorYano, Kentaro. author
TitleCR Submanifolds of Kaehlerian and Sasakian Manifolds [electronic resource] / by Kentaro Yano, Masahiro Kon
ImprintBoston, MA : Birkhรคuser Boston, 1983
Connect tohttp://dx.doi.org/10.1007/978-1-4684-9424-2
Descript X, 208 p. online resource

CONTENT

I. Structures on Riemannian manifolds -- ยง1. Riemannian manifolds -- ยง2. Kaehlerian manifolds -- ยง3. Sasakian manifolds -- ยง4. f-structure -- II. Submanifolds -- ยง1. Induced connection and second fundamental form -- ยง2. Equations of Gauss, Codazzi and Ricci -- ยง3. Normal connection -- ยง4. Laplacian of the second fundamental form -- ยง5. Submanifolds of space forms -- ยง6. Parallel second fundamental form -- III. Contact CR submanifolds -- ยง1. Submanifolds of Sasakian manifolds -- ยง2. f-structure on submanifolds -- ยง3. Integrability of distributions -- ยง4. Totally contact umbilical submanifolds -- ยง5. Examples of contact CR submanifolds -- ยง6. Flat normal connection -- ยง7. Minimal contact CR submanifolds -- IV. CR submanifolds -- ยง1. Submanifolds of Kaehlerian manifolds -- ยง2. CR submanifolds of Hermitian manifolds -- ยง3. Characterization of CR submanifolds -- ยง4. Distributions -- ยง5. Parallel f-structure -- ยง6. Totally umbilical submanifolds -- ยง7. Examples of CR submanifolds -- ยง8. Semi-flat normal connection -- ยง9. Normal connection of invariant submanifolds -- ยง10. Parallel mean curvature vector -- ยง11. Integral formulas -- ยง12. CR submanifolds of Cm -- V. Submanifolds and Riemannian fibre bundles -- ยง1. Curvature tensors -- ยง2. Mean curvature vector -- ยง3. Lengths of the second fundamental forms -- VI. Hypersurfaces -- ยง1. Real hypersurfaces of complex space forms -- ยง2. Pseudo-Einstein real hypersurfaces -- ยง3. Generic minimal submanifolds -- ยง4. Semidefinite second fundamental form -- ยง5. Hypersurfaces of S2n+1 -- ยง6. (f,g,u,v,?)-structure -- Author index


SUBJECT

  1. Mathematics
  2. Global analysis (Mathematics)
  3. Manifolds (Mathematics)
  4. Partial differential equations
  5. Differential geometry
  6. Complex manifolds
  7. Mathematics
  8. Differential Geometry
  9. Global Analysis and Analysis on Manifolds
  10. Manifolds and Cell Complexes (incl. Diff.Topology)
  11. Partial Differential Equations