AuthorNewton, Paul K. author
TitleThe N-Vortex Problem [electronic resource] : Analytical Techniques / by Paul K. Newton
ImprintNew York, NY : Springer New York, 2001
Connect tohttp://dx.doi.org/10.1007/978-1-4684-9290-3
Descript XVIII, 420 p. online resource

CONTENT

Preface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Greenโs Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimotoโs Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References


SUBJECT

  1. Mathematics
  2. Applied mathematics
  3. Engineering mathematics
  4. Manifolds (Mathematics)
  5. Complex manifolds
  6. Continuum physics
  7. Fluids
  8. Computational intelligence
  9. Mathematics
  10. Applications of Mathematics
  11. Classical Continuum Physics
  12. Fluid- and Aerodynamics
  13. Manifolds and Cell Complexes (incl. Diff.Topology)
  14. Computational Intelligence