Office of Academic Resources
Chulalongkorn University
Chulalongkorn University

Home / Help

TitleProducts of Random Matrices with Applications to Schrรถdinger Operators [electronic resource] / edited by Philippe Bougerol, Jean Lacroix
ImprintBoston, MA : Birkhรคuser Boston, 1985
Connect tohttp://dx.doi.org/10.1007/978-1-4684-9172-2
Descript XI, 284 p. 1 illus. online resource

SUMMARY

CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRร{150}DINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRร{150}DINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrรถdinger operator in 253 a strip 259 2. Ergodie Schrรถdinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(̃,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P


CONTENT

A: โ{128}{156}Limit Theorems for Products of Random Matricesโ{128}{157} -- I โ{128}{148} The Upper Lyapunov Exponent -- II โ{128}{148} Matrices of Order Two -- III โ{128}{148} Contraction Properties -- IV โ{128}{148} Comparison of Lyapunov Exponents and Boundaries -- V โ{128}{148} Central Limit Theorems and Related Results -- VI โ{128}{148} Properties of the Invariant Measure and Applications -- B: โ{128}{156}Random Schrรถdinger Operatorsโ{128}{157} -- I โ{128}{148} The Deterministic Schrodinger Operator -- II โ{128}{148} Ergodic Schrรถdinger Operators -- III โ{128}{148} The Pure Point Spectrum -- IV โ{128}{148} Schrรถdinger Operators in a Strip


Mathematics Matrix theory Algebra Partial differential equations Probabilities Mathematics Probability Theory and Stochastic Processes Linear and Multilinear Algebras Matrix Theory Partial Differential Equations



Location



Office of Academic Resources, Chulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10330 Thailand

Contact Us

Tel. 0-2218-2929,
0-2218-2927 (Library Service)
0-2218-2903 (Administrative Division)
Fax. 0-2215-3617, 0-2218-2907

Social Network

  line

facebook   instragram