Author | Simmonds, James G. author |
---|---|

Title | A Brief on Tensor Analysis [electronic resource] / by James G. Simmonds |

Imprint | New York, NY : Springer US, 1982 |

Connect to | http://dx.doi.org/10.1007/978-1-4684-0141-7 |

Descript | online resource |

SUMMARY

When I was an undergraduate, working as a co-op student at North American Aviation, I tried to learn something about tensors. In the Aeronautical Enยญ gineering Department at MIT, I had just finished an introductory course in classical mechanics that so impressed me that to this day I cannot watch a plane in flight-especially in a tum-without imaging it bristling with vecยญ tors. Near the end of the course the professor showed that, if an airplane is treated as a rigid body, there arises a mysterious collection of rather simpleยญ looking integrals called the components of the moment of inertia tensor. Tensor-what power those two syllables seemed to resonate. I had heard the word once before, in an aside by a graduate instructor to the cognoscenti in the front row of a course in strength of materials. "What the book calls stress is actually a tensor. . . ." With my interest twice piqued and with time off from fighting the brushยญ fires of a demanding curriculum, I was ready for my first serious effort at selfยญ instruction. In Los Angeles, after several tries, I found a store with a book on tensor analysis. In my mind I had rehearsed the scene in which a graduate stuยญ dent or professor, spying me there, would shout, "You're an undergraduate

CONTENT

I Introduction: Vectors and Tensors -- Three-Dimensional Euclidean Space -- Directed Line Segments -- Addition of Two Vectors -- Multiplication of a Vector v by a Scalar ? -- Things That Vectors May Represent -- Cartesian Coordinates -- The Dot Product -- Cartesian Base Vectors -- The Interpretation of Vector Addition -- The Cross Product -- Alternate Interpretation of the Dot and Cross Product. Tensors -- Definitions -- The Cartesian Components of a Second Order Tensor -- The Cartesian Basis for Second Order Tensors -- Exercises -- II General Bases and Tensor Notation -- General Bases -- The Jacobian of a Basis Is Nonzero -- The Summation Convention -- Computing the Dot Product in a General Basis -- Reciprocal Base Vectors -- The Roof (Contravariant) and Cellar (Covariant) Components of a Vector -- Simplification of the Component Form of the Dot Product in a General Basis -- Computing the Cross Product in a General Basis -- A Second Order Tensor Has Four Sets of Components in General -- Change of Basis -- Exercises -- III Newtonโ{128}{153}s Law and Tensor Calculus -- Rigid Bodies -- New Conservation Laws -- Nomenclature -- Newtonโ{128}{153}s Law in Cartesian Components -- Newtonโ{128}{153}s Law in Plane Polar Coordinates -- The Physical Components of a Vector -- The Christoffel Symbols -- General Three-Dimensional Coordinates -- Newtonโ{128}{153}s Law in General Coordinates -- Computation of the Christoffel Symbols -- An Alternate Formula for Computing the Christoffel Symbols -- A Change of Coordinates -- Transformation of the Christoffel Symbols -- Exercises -- IV The Gradient Operator, Covariant Differentiation, and the Divergence Theorem -- The Gradient -- Linear and Nonlinear Eigenvalue Problems -- The Del or Gradient Operator -- The Divergence, Curl, and Gradient of a Vector Field -- The Invariance of ? ยท v, ? ร{151} v, and ?v -- The Covariant Derivative -- The Component Forms of ? ยท v, ? ร{151} v, and ?v -- The Kinematics of Continuum Mechanics -- The Divergence Theorem -- Exercises

Mathematics
Mathematical analysis
Analysis (Mathematics)
Mathematics
Analysis