Author | Motreanu, D. author |
---|---|

Title | Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities [electronic resource] / by D. Motreanu, P. D. Panagiotopoulos |

Imprint | Boston, MA : Springer US : Imprint: Springer, 1999 |

Connect to | http://dx.doi.org/10.1007/978-1-4615-4064-9 |

Descript | XVIII, 310 p. online resource |

SUMMARY

Boundary value problems which have variational expressions in form of inequalยญ ities can be divided into two main classes. The class of boundary value probยญ lems (BVPs) leading to variational inequalities and the class of BVPs leading to hemivariational inequalities. The first class is related to convex energy functions and has being studied over the last forty years and the second class is related to nonconvex energy functions and has a shorter research "life" beginning with the works of the second author of the present book in the year 1981. Nevertheless a variety of important results have been produced within the framework of the theory of hemivariational inequalities and their numerical treatment, both in Mathematics and in Applied Sciences, especially in Engineering. It is worth noting that inequality problems, i. e. BVPs leading to variational or to hemivariational inequalities, have within a very short time had a remarkable and precipitate development in both Pure and Applied Mathematics, as well as in Mechanics and the Engineering Sciences, largely because of the possibility of applying and further developing new and efficient mathematical methods in this field, taken generally from convex and/or nonconvex Nonsmooth Analyยญ sis. The evolution of these areas of Mathematics has facilitated the solution of many open questions in Applied Sciences generally, and also allowed the formuยญ lation and the definitive mathematical and numerical study of new classes of interesting problems

Mathematics
Topological groups
Lie groups
Special functions
Applied mathematics
Engineering mathematics
Calculus of variations
Mechanics
Mathematics
Calculus of Variations and Optimal Control; Optimization
Applications of Mathematics
Special Functions
Topological Groups Lie Groups
Mechanics