Title | Nonlinear Evolution Equations That Change Type [electronic resource] / edited by Barbara Lee Keyfitz, Michael Shearer |
---|---|
Imprint | New York, NY : Springer New York, 1990 |
Connect to | http://dx.doi.org/10.1007/978-1-4613-9049-7 |
Descript | XIV, 284 p. online resource |
Multiple viscous profile Riemann solutions in mixed elliptic-hyperbolic models for flow in porous media -- On the loss of regularity of shearing flows of viscoelastic fluids -- Composite type, change of type, and degeneracy in first order systems with applications to viscoelastic flows -- Numerical simulation of inertial viscoelastic flow with change of type -- Some qualitative properties of 2 ร 2 systems of conservation laws of mixed type -- On the strict hyperbolicity of the Buckley-Leverett equations for three-phase flow -- Admissibility criteria and admissible weak solutions of Riemann problems for conservation laws of mixed type: a summary -- Shocks near the sonic line: a comparison between steady and unsteady models for change of type -- A strictly hyperbolic system of conservation laws admitting singular shocks -- An existence and uniqueness result for two nonstrictly hyperbolic systems -- Overcompressive shock waves -- Quadratic dynamical systems describing shear flow of non-Newtonian fluids -- Dynamic phase transitions: a connection matrix approach -- A well-posed boundary value problem for supercritical flow of viscoelastic fluids of Maxwell type -- Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading -- Undercompressive shocks in systems of conservation laws -- Measure valued solutions to a backward-forward heat equation: a conference report -- One-dimensional thermomechanical phase transitions with non-convex potentials of Ginzburg-Landau type -- Admissibility of solutions to the Riemann problem for systems of mixed type-transonic small disturbance theory-