AuthorMoise, Edwin E. author
TitleIntroductory Problem Courses in Analysis and Topology [electronic resource] / by Edwin E. Moise
ImprintNew York, NY : Springer US, 1982
Connect tohttp://dx.doi.org/10.1007/978-1-4613-8183-9
Descript 94 p. online resource

CONTENT

Analysis -- 1. Notations -- 2. The Real Numbers, Regarded as an Ordered Field -- 3. Functions, Limits, and Continuity -- 4. Integers. Sequences. The Induction Principle -- 5. The Continuity of ? -- 6. The Riemann Integral of a Bounded Function -- 7. Necessary and Sufficent Conditions for Integrability -- 8. Invertible Functions. Arc-length and Path-length -- 9. Point-wise Convergence and Uniform Convergence -- 10. Infinite Series -- 11. Absolute Convergence. Rearrangements of Series -- 12. Power Series -- 13. Power Series for Elementary Functions -- Topology -- 1. Sets and Functions -- 2. Metric Spaces -- 3. Neighborhood Spaces and Topological Spaces -- 4. Cardinality -- 5. The Completeness of ?. Uncountable Sets -- 6. The Schrรถder-Bernstein Theorem -- 7. Compactness in ?n -- 8. Compactness in Abstract Spaces -- 9. The Use of Choice in Existence Proofs -- 10. Linearly Ordered Spaces -- 11. Mappings Between Metric Spaces -- 12. Mappings Between Topological Spaces -- 13. Connectivity -- 14. Well-ordering -- 15. The Existence of Well-orderings. Zornโs Lemma


SUBJECT

  1. Mathematics
  2. Mathematical analysis
  3. Analysis (Mathematics)
  4. Topology
  5. Mathematics
  6. Analysis
  7. Topology